Appendix E

Cattle Tick Dip Locations Data

001

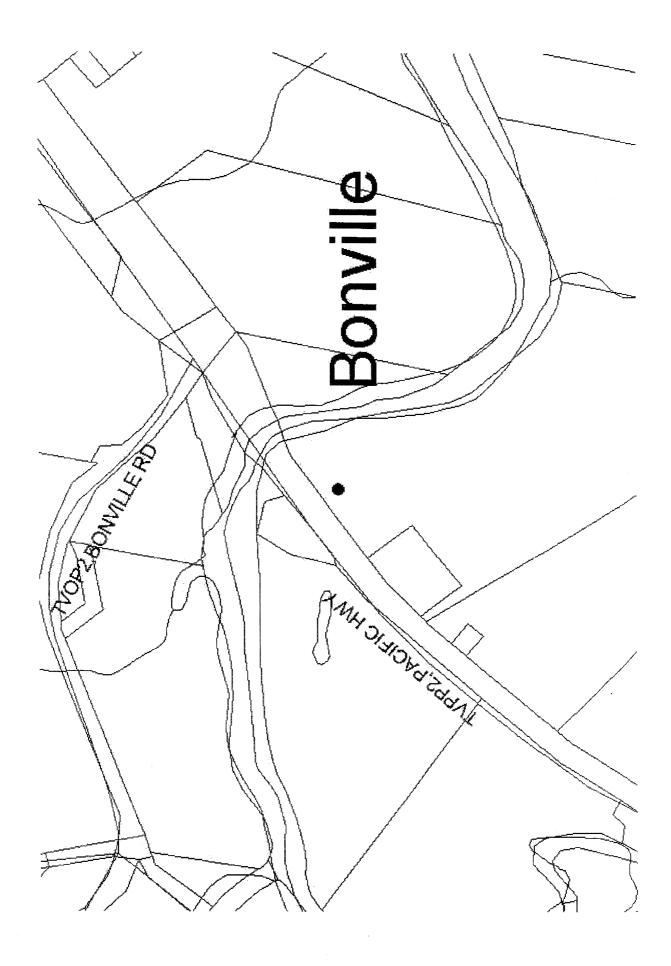
DOCI FILE 3.4

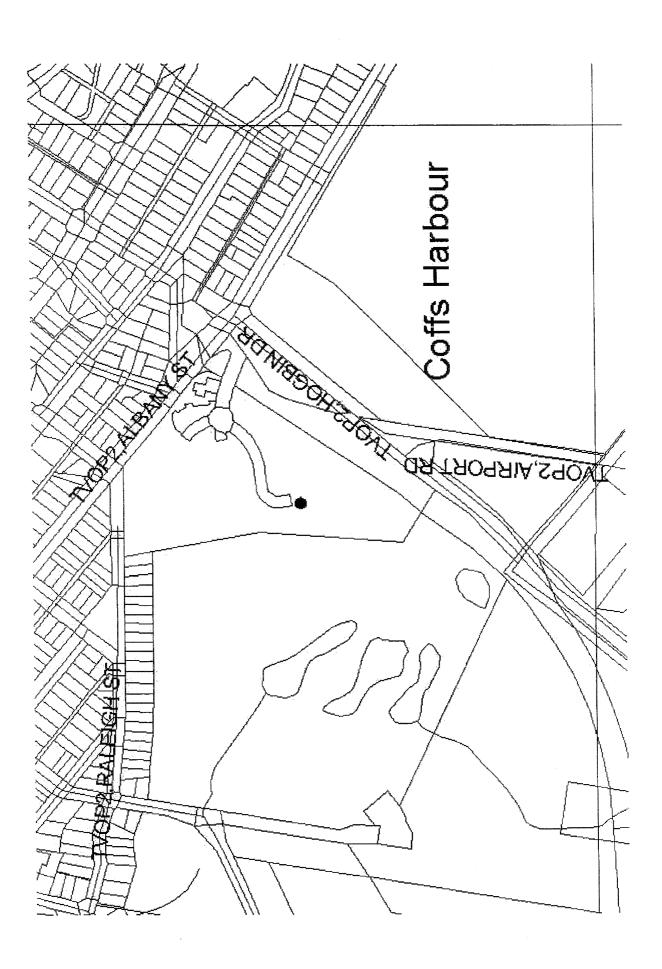
CATTLE TICK PROGRAM Wollongbar Agricultural Institute

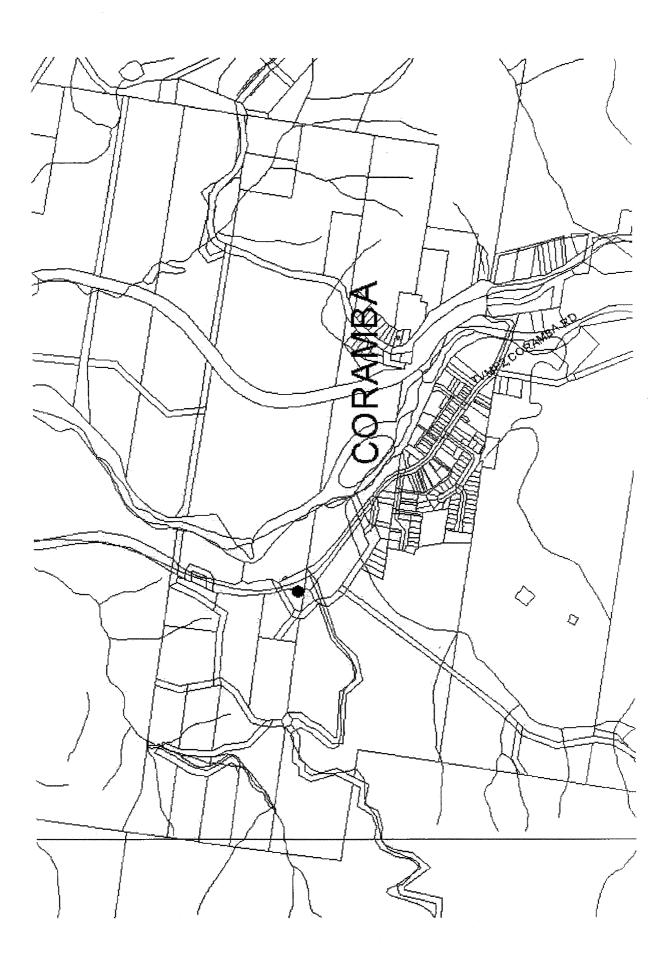
> Phone: (02) 6626 1201 Fax: (02) 6626 1202

FACSMILE MESSAGE

÷.


NSW AGRICULTURE North Coast Region


Pavid Caro George Nastaie 15/2/02 Total Pages: RECEIVED - CONNELL WA TO: 15 APR 2002 FROM: DATE: T PROJECT / FILE No: 1093-65.660


Coffs Shire dips

Available information	· -							
This report was printed of Dip Name: Co	on: 15/04/2002	The information is valid to: 15/0 Road: CORAMBA ROAD			5/2001 Town:		CORAMBA	
ocation and status dotails	for this din				101	****	CONTRIBA	
Location and status details Map Sheet: 9537-IV-3 Map Zone: 56 Easting: 500800 Northing 6656950 Sampling Soil No Water: For further informat please contact NSW 0266261201	S Parish: County: Council: No ion on samples	COMLAROI FITZROY COFFS HARBOUR **Please note: Dip Status curren at time of database release - see Valid date."Active" means dipping occurred in past 12 months, "Inactive" means no dipping in that time .To assist in any decisions please call NSW Agriculture on 0266261201 for current status information.			Lease Expiry Date:		DEMOLISH GOVERNMENT NOT CURRENT s: NONE	
History of chemicals used Chemical ARSENIC				ate Charg 6/32	ed	The chemic used at this NONE Its trade nar		
Site details for this dip . Proximity to Housing: Adjacent Land Uses:	NO	ERVE			erway wi Type:	thin 100m:	No SANDY LOAM	
	2000-14-14-14-14-14-14-14-14-14-14-14-14-14-			Warning	Signs in	Place:	No	
Site works undertaken at tu Cleanup Commenced: Cleanup Completed:	Yes	Completed:			Dip Sta	atus: DEMOL	ISH	
Cleanup Details:	Drainage Works: Dip Fences Remo Dip Shed Remove Dip Bath Remove Dip Bath Buried:	ed: Yes	Highly Conta Contaminate			oved No No		

Available information	for selected dip.						
This report was printed	l on: 15/04/2002	The informa	tion is valid to:	15/05/2	:001		
Dip Name: COF	FS HARBOUR	Road: Cl	R ALBANY & HO	OGBIN DR	t Town	: CIT	Y HILL, COFFS
Location and status detai	ls for this dip.				activerzykanostateren agyrygdwy	in the second	
Map Sheet: 9537-III Map Zone: 56 Easting: 511400	County:	BOUR BOUR		Dip Statu Land Ter Lease St	nure	DEMOLISH LEASED NOT CURRENT	
Northing 664705 Sampling Soil Yes Water: For further informa please contact NS 0266261201	No Stion on samples	at time of o Valid date.' occurred in "Inactive" r that time . decisions p Agriculture	ote: Dip Status of database release "Active" means of n past 12 month means no dippin To assist in any lease call NSW on 026626120 atus information.	- see lipping s, g in 1 for	PriorityR Zoning:	kpiry Date: anking: ncumbrances:	NONE
History of chemicals use Chemical	d in this dip.			ite Charge	p	201200-00-00-00-00-00-00-00-00-00-00-00-00-	
ARSENIC				1/43		I he chemica used at this NONE Its trade nam	
Site details for this dip .		ayer Antonio an Adomica and a successing of the succession of	1	P			an a
Proximity to Housing Adjacent Land Uses:	: NO			Wate	erway with	nin 100m:	No
,		LJ	ſ		Type: Signs in P	<u> </u>	OAMY SAND
Site works undertaken a	t this dip .		L				
Cleanup Commence Cleanup Completed		Completed:			Dip Stat	rus: DEMOLI	ISH
Cleanup Details:	Drainage Works: Dip Fences Remo Dip Shed Remove Dip Bath Remove Dip Bath Burled:	ed: Yes	Highly Conta Contaminate			ved No No	

Available information for selected dip.

nis report was printed	on: 15/04/2002	The informa	tion is valid to:	15/05/2001		nya waka ka kuta ya kuta kuta kuta kuta kuta kuta kuta kut
p Name: E	ONVILLE	Road:	PACIFIC HIGHW	/AY Tow	n:	BONVILLE
ocation and status detail	s for this dip.		s contractor and the second			
Map Sheet: 9537-III- Map Zone: 56 Easting: 503730 Northing 6640270 Sampling 5031 Soil No Water: For further informa please contact NSV 0266261201 Story of chemicals used	No tion on samples V Agriculture on	at time of (Valid date. occurred i "Inactive" that time . decisions p Agriculture	ote: Dip Status cur database release - : "Active" means dip n past 12 months, means no dipping i To assist in any blease call NSW on 0266261201 atus information.	see Lease I ping Priority n Zoning Legal E	enure Status: Expiry Date: Ranking:	DEMOLISH PRIVATE NOT CURRENT
ARSENIC				6/34	used at this o NONE Its trade nam	
ite details for this dip .			7	Γ	11.1.400	
Proximity to Housing	: 50 M]	M	Waterway w Soil Type: /arning Signs in	S	Yes IILT LOAM
Site works undertaken a	t this dip .	na a de la constante en				
Cleanup Commence Cleanup Completed		e Completed:		Dip Sl	atus: DEMOL	ISH
Cleanup Details:	Drainage Works Dip Fences Ren Dip Shed Remo Dip Bath Remo Dip Bath Burled	noved: Yes wed: Yes wed: No	- ·	inated Soil Ren Areas Covered:		

Appendix F

Holmes and Holmes PTY Ltd Desk Study Report

HOLMES & HOLMES PTY. LTD.

TERED ENGINEERS (AUSTRALIA)

P.O. Box J 159, Coffs Harbour Jetty, 2450. Laboratory: Rippingale Road, Kororo, 2450. Telephone: (066) 53 6457

14th June 2002 (023 959)

COMMENTS ON GEOTECHNICAL CONSIDERATIONS FOR HIGHWAY ROUTES FROM SOUTH OF COFFS HARBOUR, TO NORTH OF WOOLGOOLGA

The following comments have been prepared for Connell Wagner as an overview of our local knowledge of this area.

Because of the lack of major civil engineering projects in this area, the knowledge has been accumulated over the last twenty eight years by our involvement in residential buildings and subdivisional work, and site investigations for civil engineering projects such as the airport, water supply, roads and bridges. Such projects have rarely required diamond coring.

The underlying bedrock is a complex of metasediments, some of which have been silicified and formed into very hard beds whilst the majority are deeply weathered and highly fractured claystones and siltstones. The distinctive topographical features of the area reflect the variation in bedrock resistance to erosion, with the steep ridge lines being associated with the more silicified beds.

However, such beds are often discontinuous and soft areas can occur in the ridges.

Low elevation areas of the routes are associated with wetter more swampy terrain. While there are no major waterway crossings, the existing Highway route traverses back swamp terrain associated with aeolian sand dune formations along the coastal fringe. Such areas have a high water table, (often at ground level in a wet period) and require appropriate subgrade preparation. The use of geofabric cloth and rock stabilization is generally required to allow fill to be placed.

Creek crossings in the foothills are less problematic, although there is frequently a two to three metre deep poorly consolidated layer of erosion debris of gravel and clay in the bed.

Page Two

Geotechnical Considerations Highway Routes, Coffs Harbour

1) <u>Stability</u>

There is considered to be a low risk of slope instability associated with natural slopes in the area.

Landslides and slips are invariably associated with surface disturbance due to man-made works, including land clearing. Such instability is usually in the form of translational surface slips and erosion debris slides.

Observation of road cuttings in the area indicates that batters of one vertical to one-and-a-half horizontal are generally stable, although minor 'settling in' slumping can be expected.

Where the silicified sediments are encountered, steeper batters can be used, but weaker beds within such sediments if present, can be expected to cause problems with stability, particularly if they act as aquifers for ground water.

2) Chemical Residue Testing of Former Bananalands

The proposed routes will cross former bananalands and the necessary testing for arsenic, lead, organochlorines and organophosphates may be required.

Coffs Harbour City Council has Plans indicating former banana plantation areas which could be contaminated with chemicals.

It would seem that the risk to the environment and humans is very minimal if the topsoil is to be retained within the road reserve, and testing could be unnecessary. This should be ascertained with Council and the E.P.A. If the topsoil is to be removed and used elsewhere, then testing should be undertaken.

The attached copy of threshold levels from the E.P.A. "Guidelines for N.S.W. Site Auditors" indicates the appropriate residue threshold levels. We consider that Column 4 is appropriate for work within the road reserve, whereas Column 1 should be used as a precautionary measure if soil is to be sent off site.

Page Three

Geotechnical Considerations Highway Routes, Coffs Harbour

From our experience in the Coffs Harbour area since 1992 when testing was first undertaken, low level arsenic contamination is widespread across older plantations. However levels rarely exceed 200 p.p.m. Because of the variability in application, the stripping and stockpiling of topsoil (as would be expected in large scale earthworks) and subsequent re-spreading will ensure adequate mixing and dilution of the arsenic.

Identifiable packing shed locations represent locations likely to be significantly more highly contaminated, and soil from these areas should be tested. Again, considering the extent of the earthworks on this type of project, remediation by mixing and dilution with the surrounding topsoil should be possible where necessary.

It is not expected that the problem of chemical contamination will play a significant role in the route selection, although the cost of testing (if required) should not be overlooked, currently about \$1600 / Ha.

3) Acid Sulphate Soils

The soil conservation Maps of the area indicate that the low lying (below R.L. 10) estuarine creek lines have the potential to provide acid sulphate soils, with varying likelihood of occurrence. This will affect the upgrading of the existing Highway more than the alternative routes further from the coast.

From the limited testing carried out in this area, it is expected that significant problems will not be encountered. Generally the likely occurrence will be over relatively short lengths. Because of the topography such areas will have to be filled to provide a stable pavement foundation.

Problems will therefore be limited to dealing with the potential acid generation in the surface layer. This tends to be of low significance since the natural cycle of wet and dry in this layer has, over time, completed the oxidization and already leeched out the acid.

Where encountered, it is expected that acid forming soils will be able to be neutralised with 5 kg to 10 kg of lime per tonne, with the usual precautions being taken to prevent runoff from stockpiles entering waterways before neutralisation can be achieved.

It is not expected that the problem of acid sulphate soils will play a significant role in the route selection.

SOIL INVESTIGATION LEVELS FOR

Health-based investigation levels' (mg/kg)								
Substance	Residential with gardens and accessible soil (home-grown produce contributing less than 10% fruit and vegetable intake; no poultry), including children's day- care centres, preschools and primary schools, or town houses or villas (NEHF A)	Residential with minimal access to soil including high- rise apartments and flats (NEHF D)	Parks, recreational open space, playing fields including secondary schools (NEHF E)	Commercial or industrial (NEHF F)	levels' for sandy loarns pH 6-8 (mg/kg)			
an ing mga gang ang ang ang ang ang ang ang ang	Column I	Column 2	Column 3	Column 4	Column 5			
Aldrin + Dieldrin	10	40	20	50	-			
Arsenic (total)	100	400	200	500	20			
Benzo(a)pyrene		4	2	5	-			
Beryllium	20	80	40	100	-			
Cadmium	20	80	40	100	3			
Chlordane	50	200	100	250				
Chromium (III) ²	12%	48%	24%	60%	400			
Chromium (VI)	100	400	200	500				
Copper	1000	4000	2000	5000	100			
Cyanides (complex)	500	2000	1000	2500	-			
DDT	200	800	400	1000				
Heptachlor	10	40	20	50				
Lead	300	1200	600	I 500	600			
Manganese	1500	6000	3000	7500	_			
Methyl mercury	10	40	20	50				
Mercury (inorganic)	15	60	30	75	1,,			
Nickel	600	2400	600	3000	60			
PAHs (total)	20	80	40	100	· ·			
PCBs (total)	10	40	20	50				
Phenol	8500	34000	17000	42500	70			
Zinc	7000	28000	14000	35000	200			

			1		
Job Nº	Nº-	As	Pb	DCs	Remartes
1101	1	17	11	0.01	4 pt composites Ct
1102	2	9,9	12	0.01	Apt composite Ct
1117	3 .	28	11	0.02	4 pt composites in banances W
1220	44	7.0	10	<0.02	5 pt compositos h
	4B	9.0	10	<0.02	// // W
gana manana manana kao manana mpika kaominina dia mandri mandri ma	AC	3.9	/0	50.02	// V
	4D	7•2	16	<0.02	
	4Ē	8.4	10	<0.02	11
	4 F	14-0	7	0.10	5 pt. composites in bananas
	46	79	12	0:07	" in bananas
1243	5	41	13	<0.02	individual
1392 / 3788	6	19	· 14	3.7	individual > NEW Ag found 1
	7	33	14-	<0.02	4 pt composite 5 Pb B V
Benetts Vol 1409	off map	140	26	0.31	redividual remediated C,
1647	8	5.5	19	<0.02	5pt. composites Cr
1664	9	26	24-	<0.02	U CH
	10	7.5	29	<002	1' CH
17/1	/1	28	10	<0.02	u W
(735	12	6	24-	0.13	Apt composites h
1765	13	17	42	0.49	5pt compontes W
1766	14-	8	13	0.45	5, st composites u
(863	15	50	12	0.2	individual 4
1865	16	12	20	0.14_	4 pt composites CH
	17	39	30	26.0	
	18	29	35	0.12	CH
1877	19	120	17	0.03	individual remediated W
1890	20	12	14	20.02	5 pt composites li
1928	21	8.5	49	<0.02	5 pt composites u
2026	22	42	43	20.02	individual samples W
2067	23	22	18	0.30	Ppt composites in
2346	24	36	140	5.2	individuals Ct
boundye, 2375	incep	58	26	0.10	individends - Cl
2457	25	44	35	0.07	individuals U
2557	26	6	16	<0.02	5pt composites Ct
					and the second sec

Job No	No	As	Pb	DCs	Remothes	normality of the state of the
2719	27	93	14-	<0.2	üdwichal sample	W
2745	28	19	17	<0.02	5pt compriles	W
2857	29	19	18	0.04	5pt composites	ω
2912	30	28	17	0.02	5 pt composites	W
2992	31	5	12	20.02	5 pt composites	w
3000	32	78	21	0.06	individual	CH
	33	7	74-	0.02	5 pt composites	CPf
3022	34-	28	21	50.02	5 pt composites	CH
3200	35	175	66	0:11	individuals	СН
	36	6	26	0.74	Apt composites	CH
	37	42	33	0.26	4 pt compositas	CH
3223	38	90 .	24-	<0.02	Undividual.	W
3224	39	12	35	<0.02	A pt composites	¢!
3271	40	16	15	<0.0Z	Spt composite	Ľ
3284	41	not tested		0.08	5 pt composite	Cf
3313	42	14-	15	<0.02	5pt composite	ω
3355	43	6.0	17	<0.02	5pt composito	W
3362	44	4.0	17	<0.02	5pt composite	W
3424	A5	165	20	<0.02	individual semediated	W
3455	46	6	17	<0.02	4 pt composites	W
	47	71/2	18	<0.02	[/	Ŵ
3491	48	120	27	<0.02	4 individual	ω
3513	49	92	41	0.26	Apt composites & individual	ĊŦ
3523	50	20	10	<0.02	4 pt composites	W
3532	51	13	14	<0.02	4 pt composites	CF
3534-	52	7	15	0.08	Apt composite	W
3572	53	4.5	15	0.05		
3577	54-	170	34	0.35	4 11	CH
36 14-	55	54-	25	0.11	individuals	CH
3621	56	160	17	0.32	11	CF
3666	57	46	50	<0.02	4 pt composites	le
					· · · · · · · · · · · · · · · · · · ·	
						anna an a
	Af the rate of the second s					a management of the second
	5	· I		ł		, and a provident to