

						mu	merw	ain	osamucommerimsar		anem		armecor	NAMBUCCA AND BELLINGEN SHIRE COUNCILS	saxus	TMP SUBMISSION	
						owemeana	${ }_{\text {st }}$	${ }^{\text {c50 } 202022}$				Tran		PACIFIC HIGHWAY UPGRADE NAMBUCCA HEADS TO URUNGA	vacue		
						casour	6	05092302			W	Roads \& Maritime	可OMP	TRAFFIC AND STAGING ARRANGEMENTS	TMP		
-	310,2023	Trafic manceserer sumusion	${ }_{52.5}$	8,	EN.		$\stackrel{\text { NP. }}{\text { FN }}$		Scale $15000{ }^{50}$	${ }^{100}$			Futur	ZONE 3 - BURKES LANE TO KALANG RIVER		mmate	
${ }^{\text {a }}$	${ }^{\text {OSOP2012 }}$	Tenoz sumusson	oun	NP.	$\stackrel{\text { EN }}{ }$	moneremeneat	KL	\%	cocosmersstu worzens	нватототи Аа.				SHEET 6 - STAGE 3	TE	NH2U-DG-TW-0326	B

$$
{ }_{82800}
$$

Civerigroup	 NAMBUCCA HEADSOS TOURUNGA TONA 4-KALANG RVER TO WATEREAL SHEET 2-STAGE 1	TMP SUBMISSION		
		тм		
		TE	NH2U-DG-TW-0414	

$$
\begin{aligned}
& \text { INTERSECTION ADJUSTMENT REFER } \\
& \text { DRAWING No. NH2U-DG-RD-0571. }
\end{aligned}
$$

g	9100-ML-90-nzHN	${ }^{\text {1 }}$				OnM minderan	mempanasasamamos	zaresosd	7x	maso			memo	noum	and	ns
	(1)	${ }^{3}$				$\overbrace{01}^{\text {civ }}$		zuceos	Ns	xanama	${ }_{\text {N }}^{\text {N }}$	${ }_{\text {r }}^{\text {ra }}$	${ }^{170}$	Nossmenc sumusomm		$\stackrel{V}{8}$
		dWı						zavesos	${ }^{\circ}$	mamen						
	manuonumanemem							2uceose	\%s	xamomeme						
	NOISSIW日 ${ }^{\text {a }}$ dW							nevemen	${ }^{10}$, mesasmam						

$$
88800
$$

8	8100-ML-90-nzHN	${ }^{11}$	 \forall VNnY OL SOGヨH \forall OOn\&W甘N ЭOYYOd AYMHOH OHOVd
	manuonumaneman		
	NOISSIWens dWı		

	CONTRACIOR Constructing Australia's Future	${ }^{\text {Prouect }}$	NAMBUCCA AND BELLINGEN SHIRE COUNCILS PACIFIC HIGHWAY UPGRADE NAMBUCCA HEADS TO URUNGA HORIZONTAL \& VERTICAL DESIGN TEMPORARY WORKS SITE ACCESS - IRONBARK TRAIL	${ }^{\text {siauj }}$ TMP SUBMISSION		
				$\begin{array}{\|c\|} \hline \text { volune } \\ \text { TMP } \end{array}$		
				Phuse	drammg wo	Rev
				TE	NH2U-DG-RD-0501	B

LEGEND		
GENERAL		
-		EXISTING PAVEMENT
		SURVEY
		CADASTRAL (ACCURACY UNKNOWN)
		SITE BOUNDARY (SWTC APP.2)
-		SITE BOUNDARY OFFSET (DISTANCE VARIES)
---		LOCAL ROAD CORRIDOR BOUNDARY (AS MODIFIED FOR TENDER DESIGN)
		LOCAL ROAD CORRIDOR BOUNDARY (SWTC APP.3)
		AREA OF TEMPORARY PAVEMENTS
NOTES		
,	FOR FU	R DETALL ON CLEARING EXTENTS
	REFER	WINGS NH2U-DG-EV-0001 TO 0048.
		R DETALL ON PROPERTY WORKS REFER NH2U-DG-PA-0001 TO 0125

9			SYYOM 人YVYOOdWヨ1 \forall VNกy O OL SOVヨH $\forall O J \cap \& W \forall N$ 	 			alssimmasoon	zuezess	7x	memme			and	mema	边	Eivo	
\％		$\stackrel{3}{3}$					s	ziverese	${ }^{\mathrm{N}=}$	s．enm wose	w：		${ }_{\text {rem }}^{\text {re }}$	${ }^{170}$			
		dWL						${ }^{2012065}$	${ }^{0} \mathrm{O}$	caso							
	munumonoinumbeaw	mmon						zueress	Hs	xamomuman							
NOISSING ${ }^{\text {d }}$ dW \perp								20188	70	nosesalme							

INTERCHANGE FLCOD PLAIN $\frac{\text { KEY PLAN }}{\text { NTS }}$	

Technical Note

To	Emidio D'Angola
From	Richard Thomas
Date	03 August 2012
Project No	NB10016
Subject	NH2U - Construction Traffic Intersection Assessment

1. Introduction

During the construction phase of the Pacific Highway Upgrade, five construction compound sites are proposed to be established at selected local roads. During the construction period, these sites will be accessed by construction staff and their vehicles via nominated local roads and their associated intersections. The proposed access points are summarised in Table 1.

- Table 1 Proposed Construction Compound Site Locations

Minor Road	Type of Construction Compound Site	Intersection	Intersection Control
Ballards Road	Main	Pacific Highway/ Ballard Road	Give way
Valla Road	Satellite	Pacific Highway/ Valla Road	Give way
Deep Creek Road	Satellite	Pacific Highway/ Deep Creek Road	Give way
Bourke Lane	Access only	Pacific Highway/Bourke Lane	Give way
Short Cut Road	Satellite	Pacific Highway/ Short Cut Road Short Cut Road/South Arm Road	Give way Give way
Ironbark Trail	Satellite	Iron Bark Trail/ Old Coast Road	Give way

As a result of the increase in traffic associated with construction activity, the operational performance of these intersections may be affected by the combination of both existing general traffic and the additional construction traffic. An analysis has been carried out to assess the operational performance of these intersections with the forecast 2016 traffic and the proposed geometric configurations.

The purpose of this technical note is to document the methodology used to estimate the construction traffic volumes at the nominated intersections, and to document the corresponding intersection performance analyses and commentary.

The key procedures involved during the assessment are:

- Extract relevant data sources;
- Undertake appropriate assumptions in relation to traffic volumes;
- Estimate 2016 construction traffic turning volumes at the nominated intersections;
- Estimate 2016 general/ background traffic turning volumes at the nominated intersections;
- Undertake operational performance analysis for those intersections; and
- Provide conclusions based on the analysis and commentary on the appropriateness of the concept design intersection layouts.

1.1 Data Sources and Assumptions

From the report Pacific Highway Upgrade - Nambucca Heads to Urunga SWTC Appendix 09 Geometric Performance and Design Requirements, the following traffic data inputs have been extracted for analysis purposes:

- 2016 Average Annual Daily Traffic (AADT) Volumes; and
- Heavy vehicle (HV) proportions.

Information on proposed worksite construction traffic and locations has been provided by the project team.

2. 2016 Turning Traffic Volumes Estimation

2.12016 General Traffic

The 2016 turning volumes of general/ background traffic have been estimated by adopting the SWTC values where available, and then making assumptions to fill in the remaining required detail. The assumptions made were derived based on professional judgement by observing adjacent land uses, access points, road hierarchy, and possible route choices.

Additional assumptions made in the assessment and their potential impacts on the results include:

- The peak hour traffic volume has been estimated by assuming 10% of the AADT occurs in each of the peak hour.
- The directional traffic volumes have been estimated based on the assumption that 60% of AADT would travel north and 40% AADT would travel south during the morning peak period. This estimate has been made as a result of examining adjoining land use and the location of adjacent centres of employment, as well as some understanding of regional travel patterns. The use of a higher northbound volume, which conflicts with the southbound right turn, assists to make the modelling results conservative. Short Cut Road and Old Coast Road have an assumed 50-50 directional split.
- The AM peak period has been adopted for modelling, as this period has been assumed to coincide with the highest concentration of construction arrival movements. Anecdotal observation of other large road construction projects indicates that the staff arrival period in the morning is more condensed compared to the departure period in the afternoon. The morning arrival period also coincides with higher southbound right turn conflict at most locations, making the modelling results conservative.
- It is assumed that the peak hour of background traffic flow coincides with the peak period of arrivals to the worksite compounds, approximately 06:00 to 08:00.
- Existing Pacific Highway traffic has been calculated by adding the SWTC Appendix 9 2016 "Mainline" traffic with the 2016 "Service Road" traffic. The location of "north of Nambucca Heads Interchange" has been adopted for the determination of Pacific Highway traffic at Valla Road, Deep Creek Road and Ballards Road and no allowance for the addition or subtraction of turning traffic has been made between those locations.
- At Deep Creek Road the 2016 traffic volumes for Valla Road were adopted as being representative of the local road AADT prior to opening.
- Old Coast Road an assumed AADT of 3000 vehicles, with 10% heavy vehicle traffic was adopted.
- Bourke Lane local traffic was estimated at an AADT of 280 with 10% heavy vehicles.

2.2 Construction Traffic

The construction traffic has been estimated based on the supplied information about workforce size, working hours, average hourly heavy vehicle flows and appropriate assumptions, which are underlined below:

- Ballards Road is proposed to include the main construction compound, with a workforce of around 300 personnel. Valla Road is proposed as a satellite compound with a workforce size of 100 personnel for modelling purposes.
- The staff arrival and departure periods at the main worksite compound is expected to occur over a two hour period, with the arrival and departure period of one hour at the satellite compound
- Due to the longer distance from the regional towns where the construction workforce is expected to be sourced and the construction sites, it is expected the construction staff will share their vehicles to minimise the travel costs. To account for car pooling a 15% reduction has been applied to the nominated workforce size to determine the construction light vehicle (LV) volume.
- An average of 20 heavy vehicle (HV) movements per hour to/ from all construction sites has been adopted;
- Based on the proximity and the density of surrounding regional town centres, it is assumed the 80% of construction workforce and construction heavy vehicle trips will be generated to/ from the northern regions and the remaining 20% to/ from the southern regions.
- At Ironbark Trail, all arriving and departing construction traffic is expected to occur to/from the north, due to the location of the rest of the project/work compounds and likely origin of heavy vehicles. Similarly, at Bourke Lane, being a heavy vehicle access only, it was assumed that 60% of the construction traffic would arrive/depart to/from the south, and 40% to/from the north due to the location of adjacent compound locations.
- In order to balance the flows for modelling purposes at Deep Creek Road, an assumed volume of 52 additional construction light vehicles were added to the modelled volume of southbound right turning vehicles for the AM peak. This additional volume of traffic may account for vehicles arriving from the north and using Deep Creek Road as an alternative access to the Valla Road worksite. No deduction has been considered during the modelling of Valla Road.

Based on the above assumptions, the 2016 light vehicle (LV) and heavy vehicle (HV) total turning volumes at the nominated intersections have been estimated. These details are shown below in Figure 1 to Figure 8, which include both existing background traffic and proposed construction traffic for the AM peak hour. The numbers in these figures represent separate LV and HVs (see legend in Figure 1).

- Figure 1 Pacific Highway/ Ballards Road- 2016 Estimated Total Volumes

- Figure 2 Pacific Highway/ Valla Road- 2016 Estimated Total Volumes

- Figure 3 Pacific Highway/ Deep Creek Road- 2016 Estimated Total Volumes

- Figure 4 Pacific Highway/ Bourke Lane - 2016 Estimated Total Volumes

- Figure 5 Pacific Highway/ Short Cut Road- 2016 Estimated Existing Volumes

- Figure 6 Pacific Highway/ Short Cut Road- 2016 Estimated Total/Proposed Volumes

- Figure 7 Old Coast Road/ Ironbark Trail- 2016 Estimated Total Volumes

- Figure 8 Short Cut Road/ South Arm Road- 2016 Estimated Total Volumes

3. Intersection Performance Analysis

3.1 SIDRA Analysis

The nominated intersections with the proposed geometric configurations (refer Figure 9 to Figure 15 below) have been analysed by using SIDRA Intersection ${ }^{1}$ (v5.1). The RMS NSW prefers the Level of Service (LoS) as the measure of intersection performance.

Level of Service (LoS):

Level of Service (LoS) is a qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/ or passengers. This measure is used in planning design and operation of intersections. It also provides a basis for determining the number of lanes to be provided in the road network. The intersection operational conditions in terms of LoS measure are classified into five categories as listed in Table 2.

- Table 2 - Level of Service (LoS) Categories (RMS NSW)

LOS	Description	RMS NSW - Control delay in seconds (d)
A	Good	$\mathrm{d} \leq 14.5$
B	Good with minimal delays and spare capacity	$14.5<\mathrm{d} \leq 28.5$
C	Satisfactory with spare capacity	$28.5<\mathrm{d} \leq 42.5$
D	Satisfactory but operating at capacity	$42.5<\mathrm{d} \leq 55$
E	At capacity and incidents will cause excessive delays	$55<\mathrm{d} \leq 70.5$
F	Unsatisfactory and requires additional capacity	$70.5<\mathrm{d}$

(Source: AustRoads (1988))
No specific LoS for the operation of intersections during the construction period has been specific in the SWTC Appendix 9. As such, for the purposes of this assessment an acceptable level of service has been adopted of LoS D or better.

Assumptions made during the modelling include a 60 minute peak period factor and 100 per cent peak flow factor. All other SIDRA parameters were left as default.

The SWTC Appendix 9 requires deceleration lanes on the approach to right turn bays, and the length of these bays is nominated by the SWTC based on the prevailing speed limit. For Pacific Highway intersections, it has been assumed that an 80 kph worksite speed limit will be in place on approach and departure to the intersections. However all deceleration lane lengths will be confirmed during the detail design process.

Short Cut Road has a speed limit of 60 kph , and auxiliary lanes at the South Arm Road intersection are not proposed in the final design or in the construction stage.

Old Coast Road has a speed limit of 100kph, and due to the anticipated limited arrivals or departures to and from the south, acceleration and deceleration lanes from this direction have not been proposed.

Indicative deceleration and acceleration lane lengths have been used in the modelling and are shown below in Figure 9 to Figure 15. For the purposes of the assessment, the presence of queuing has been ignored for design deceleration lengths, as in all cases, the deceleration requirement is longer than the right turn storage requirement. The SIDRA modelling has been

[^0]undertaken for all intersections using the 2016 estimated total volumes (general traffic plus construction traffic). An additional assessment of the existing operation of the Pacific Highway/ Short Cut Road intersection has also been made to assess the intersection performance at 2016, without any further construction traffic loading. The main objective of this analysis is to determine the proposed LoS and also the required storage length of right turn bays. The detailed design process will determine the deceleration and acceleration lane lengths and combined with the storage length requirements give the required lengths of right turn bays.

- Figure 9 Pacific Highway/ Ballards Road Proposed Construction Period Geometry

*Note auxiliary lane lengths indicative
- Figure 10 Pacific Highway/ Valla Road Proposed Construction Period Geometry

*Note auxiliary lane lengths indicative
- Figure 11 Pacific Highway/ Deep Creek Road Indicative Construction Period Geometry

*Note: Auxiliary lane lengths indicative. Provision for northbound right turns may be required
- Figure 12 Pacific Highway/ Bourke Lane Indicative Construction Period Geometry

*Note: Auxiliary lane lengths indicative.
- Figure 13 Pacific Highway/ Short Cut Road Proposed Existing Geometry

[^1]- Figure 14 South Arm Road/ Short Cut Road Proposed Construction Period Geometry

- Figure 15 Ironbark Trail/ Old Coast Road Proposed Construction Period Geometry

The SIDRA analysis results are shown in Table 3.

- Table 3 SIDRA Summary

Intersection	Control	Total Demand	Worst Delay (s)	Maximum Queue in Right Turn Slip Lane (m)	LoS of Worst Movement
Pacific Highway/ Ballards Road	Give way	2066	41.4 (Ballards Road)	17	C
Pacific Highway/ Valla Road	Give way	2159	37.4 (Valla Road)	15	C
Pacific Highway/ Deep Creek Road	Give way	2070	40.8 (Pacific Highway North)	14	C
Pacific Highway/ Bourke Lane	Give Way	1661	34 (Bourke Lane)	<10	C
Pacific Highway/ Short Cut Road	Give way	2123	>100 (Short Cut Road)	F	
Short Cut Road/ South Arm Road	Give way	452	11 (Short Cut Road North)	<10	A
Ironbark Trail/ Old Coast Road	Give way	376	20.9 (Old Coast Road)	15	B

The analysis results indicate that apart from Pacific Highway/ Short Cut Road intersection, all other intersections are expected to perform well within capacity without any significant capacity issues. The LoS results of these intersections is either ' B ' or ' C ', which indicate that the overall performance is good with minimal delays at the approaches.

Based on the SWTC guidelines, the right turn slip lane along the northern approaches are required to have a length equal to the required storage, plus the required deceleration lengths dependant on the prevailing speed limit.

The modelling shows that the existing Pacific Highway/ Short Cut Road intersection operates over capacity with delays on the Short Cut Road approach in the existing situation prior to the application of construction vehicles on the basis of the estimated 2016 traffic volumes. It is acknowledged that the Pacific Highway traffic volumes used in the modelling are the SWTC Appendix 9 "north of Ballards Road" volume, and these may not be reflective of the actual volumes onsite. The cause of the delays in Short Cut Road is due to a lack of adequate gaps for right turning traffic to access the Pacific Highway southbound. The modelling indicates that the existing geometric configuration will fail to operate well for the estimated 2016 general traffic and further loading of construction traffic at this intersection will contribute to a further degradation of intersection performance.

In order to improve the performance of the intersection, it is suggested that the southbound median through lane on the northern approach be closed and used to create a right turn acceleration lane. This acceleration lane would reduce the number of give-way conflicts for right turners and therefore reduce the required gap time, improving intersection performance. This proposed intersection layout is shown in Figure 16.

- Figure 16 Pacific Highway/ Short Cut Road- Proposed Geometry with Southbound Right Turn Acceleration Lane

SIDRA modelling has been undertaken with the addition of proposed construction vehicle volumes in Table 4.

- Table 4 SIDRA Summary- Pacific Highway/ Short Cut Road- With Proposed Southbound Right Turn Acceleration Lane

Intersection	Control	Total Demand	Worst Delay (s)	LoS of Worst Movement
Pacific Highway/ Short Cut Road	Give way (with southbound right turn acceleration lane)	2145	38 (Short Cut Road)	C

The SIDRA analysis results show that the provision of acceleration lane/median turning lane will resolve the capacity issue for right turning traffic from Short Cut Road and provide adequate capacity for both general and construction traffic. The resulting intersection is likely to perform at a LoS ' C '.

It is noted that the intersection geometry shown at Pacific Highway/ Deep Creek Road does not include the existing northbound right turn lane. Currently there is a short northbound right turn lane at the Deep Creek Road intersection which provides protected right turn storage for vehicles accessing approximately four rural properties on the eastern side of Pacific Highway, as well as access to the rail line for maintenance vehicles. The volume of vehicles accessing this precinct is insignificant for modelling purposes and so has not been included in the model. During the design phase, intersection geometry will need to be developed which ensures safe access for vehicles accessing this precinct.

The intersection of Old Coast Road/Ironbark Trail is not covered by the SWTC Appendix 9 Figure 9.23 intersection configuration requirement. For this intersection, comparison with

AUSTROADS Guide to Road Design - Part 4A Figure 4.9 has been undertaken to determine if the warrants for auxiliary lanes are met. With an estimated AADT of 3000 vehicles on Old Coast Road (150 vehicles per hour in each direction) and up to an average of 20 vehicles turning into and out of Ironbark Trail per hour, AUSTROADS indicates that a rural BA intersection configuration would be acceptable. An onsite investigation is likely to be required to ensure safe intersection sight distance and safe approach sight distance is available, and as part of this investigation it is recommended that consideration be given to the creation of a worksite speed limit and appropriate advance signposting to assist safe conditions for through and turning traffic. The worksite speed limit is only likely to be required while trucking operations are taking place. Additionally, local widening and flaring is likely to be required to facilitate concurrent in and outbound heavy vehicle turns at the intersection.

4. Conclusion

During the construction phase of the Pacific Highway upgrade (model year 2016), worksite compounds and construction access points will be established on the nominated minor roads, which are Ballards Road, Valla Road, Deep Creek Road, Bourke Lane, Short Cut Road, and Ironbark Trail. The key intersections connecting to these roads may be effected due to the additional construction traffic. An assessment has been carried out to determine the operational performance of these intersections with the forecast 2016 traffic and the proposed geometric configurations.

The 2016 general traffic at these intersections has been estimated by adopting the SWTC values where available and then making assumptions to fill in the remaining required detail. The 2016 construction traffic has been estimated based information provided on the workforce size and the number of average hourly construction heavy vehicles. Additional assumptions have been made regarding the location of regional town centres and access routes to assess the proportions of construction traffic by direction and vehicle occupancy rate.

Based on the SWTC Appendix 9 requirements, for Pacific Highway intersections the length of right turn slip lanes is dependent on the required deceleration lengths for heavy vehicles and storage. Queue lengths for vehicle storage during peak periods have been calculated using SIDRA, however in most cases these queues are relatively short, and a practical approach to queuing based on expected bunching of heavy vehicle arrivals may be more appropriate.

The results also indicate that all intersections except Pacific Highway/ Short Cut Road are expected to operate without significant delays during the AM peak. The overall performance at these intersections likely to be 'good’ (i.e. LoS is ‘C' or better).

The Pacific Highway/ Short Cut Road intersection is expected to operate above capacity with the existing intersection geometry and existing estimated traffic volumes. The traffic along Short Cut Road is likely to experience delays and queues due to lack of adequate gaps for right turning traffic to access the Pacific Highway southbound.

In order to improve the performance of the Pacific Highway/ Short Cut Road intersection, it is suggested that the southbound median through lane from the northern approach be closed to create a right turn acceleration facility. This facility would reduce the number of give-way conflicts for right turners and therefore reduce the required gap time, improving intersection performance.

The intersection of Pacific Highway/ Deep Creek road has been modelled with a southbound right turn acceleration lane, based on the SWTC Appendix 9 Figure 9.23 temporary works typical intersection treatment. During detailed design, it may be possible to accommodate a intersection treatment which balances the needs of both northbound right turn vehicles into the
rural residential precinct on the east side of the highway and southbound right turning vehicles from Deep Creek Road. A similar situation with a low volume of northbound right turn vehicles occurs at the existing intersection of Bourke Lane.

Given the estimated AADT at the Ironbark Trail/ Old Coast Road intersection, AUSTROADS indicates that the warrant for a rural BA intersection treatment is met, without dedicated auxiliary lanes. Investigation of site constraints should be undertaken to ensure turning traffic movements meet minimum safe sight distances and consideration given to provision of a reduced speed limit along Old Coast Road during construction, as part of the traffic control plan for the area.

The modelling for the intersection of Short Cut Road/ South Arm indicates that this intersection would operate at a satisfactory LoS with the existing configuration.

Richard Thomas
Senior Traffic Engineer
Sinclair Knight Merz.

NH2U Site Access - Zone 1

Constructing Australia's Future

ACCESS REQUIREMENTS;

All personnel working on site must attend the Abigroup Site Induction.
All personnel working on site must have evidence of Industry Safety Training attendance.

All site deliveries/visitors must make contact with the appropriate Abigroup site management, prior to entering the site.

The following site PPE must be worn at all times; Hard Hat,
Safety Glasses,
High Vis vest/jacket,
Long Sleeved shirt and long trousers, and Safety footwear.

All vehicles must be equipped with the following; First Aid Kit,
UHF Radio
Fire Extinguisher, and
Flashing Light.

Key:

Gate No: 20

UHF - No : CH
First Aid stations: Defibrillator:

Permitted Vehicle Access Movement:

Overhead Power Lines: \qquad
Project Works: \qquad
New Service Rd: \qquad
Existing Rds:

NH2U Site Access - Zone 2

-

- - Traffic Cones
All signs Size B.
Cones to be 700 mm high and spaced at 9 m .
NOTE:

2. Traffic to be stopped for less than 5 minutes at a time in each direction.
3. If a queue manager is deemed necessary, the queue manager is to be located within the 60 kph speed
appropriately. If queues temporarily exceed this location, the queue manger is to walk forward with the
back of the queue to warn on coming motorists and return to their original position once the traffic has moved on.
Ref - RTA TCP 440 Traffic Control at Work Sites v4.0

PACIFIC HIGHWAY UPGRADE NAMBUCCA HEADS TO URUNGA	DD-MM-YY

- - Traffic Cones
装
All signs Size B.
Cones to be 700 mm high and spaced at 9 m .
Traffic to be stopped for less than 5 minutes at a time in each direction
If a queue manager is deemed necessary, the queue manager is to be located within the 60 kph speed
zone. The supervisor is to anticipate the extent of traffic queuing and position the queue manager
appropriately. If queues temporarily exceed this location, the queue manger is to wakk forward with the
back of the queue to warn on coming motorists and return to their original position once the traffic has
moved on.
Maximum queue lengths 500 m .
Ref - RTA TCP 440 Traffic Control at Work Sites v4.0

Abİ®oup PACIFIC HIGHWAY UPGRADE nAmbucca heads to URUNGA	Date DD-MM-YY	Prepared: Signed: Date: Certificate No:	$\begin{aligned} & \text { XXXX } \\ & \text { _(............... } \\ & \text { DD-MM-YX } \\ & \text { XXXX } \end{aligned}$	Authorized: Signed: Date: Certificate No:	XXXX DD-MM-YY XXXX

- - Traffic Cones

1. All signs Size B.
$\begin{array}{ll}\text { 1. All signs Size B. } \\ \text { 2. } & \text { Cones to be spaced at } 9 \mathrm{~m} . \\ \text { 3. } & \text { Four (4) T5-5 signs to be used }\end{array}$
2. Four (4) T5-5 signs to be used in tapers.
Ref - RTA TCP 826 Traffic Control at Work Sites v4.
Ref - RTA TCP 826 Traffic Control at Work Sites v4.0
Drawing Description
INCIDENT RESPONSE ON PACIFIC HIGHWAY
1 LANE CLOSED (3 LANE 2 WAY)

Appendix E

This Appendix contains examples of inspection checklists and forms to be used at traffic control sites. The forms may be modified to suit local requirements provided that the basic information is retained.

CHECKLIST			
Date:	Time:		
Inspector:	Design \& Inspect TCPs Cert No		
RTA Office/Contractor:	Site Supervisor.		
TCP Number:		odified:	Y/N
Road/Bridge Name:	Location:		
Type of work:			
Duration of work: days	Time/s of work:		
Road configuration:			
Rate in the following manner:			
\checkmark Acceptable	X Not Acceptable	N/A Not Applicable	

Guidance Notes:

I. Detailed Inspections using this checklist shall only be undertaken by personnel holding a current Design and Inspect Traffic Control Plans certificate.
2. Report to the Site Office or most senior person and attend site induction or be escorted.
3. Desk-top "Audit". Review paperwork and discuss site conditions, to complete Column I. Check items against TCP and associated documents.
4. Site Inspection. Conduct site verification inspection, discussing issues with random site workers/ operators, to complete Column 2 - what you see on site.
5. Complete your report on site, where possible.
6. If you able to make a copy of the report on site, leave a copy with the supervisors.
7. Forward an additional copy to the engineer.
8. For contractor sites, forward an electronic copy to Manager Contractor Safety, RTA OHS Branch.

No	Conditions	TCWS Section	Rating	
			1	2
1	TCP			
1.1	Does the work require a:- A TMP ? A TCP? A VMP? (See 12 below.) A PMP?	GIO		
1.2	Are all required plans approved?	4.3		
1.3	Is the approved TCP on site?	4.4.1/.2		
1.4	Have signs and devices been set out as in the TCP ?	4.4.1/.2		
1.5	If modifications have been made are they approved and marked on the TCP ?	4.5		
1.6	Has a TCWS Appendix D Risk Assessment (RA) been done and been attached to the TCP ?	App D		
1.7	Does the RA cover the risks associated with the work site ?			
1.8	Does the RA cover current risks; including 'out of hours' work?			
1.9	Is the TCP relevant for the works in progress ?	4.4.2		
1.10	Has a Road Occupancy Licence been issued and is it being complied with ?	GII		
1.11	Are the requirements implemented for safe clearances to workers and pedestrians and traffic approach speeds ?	$\begin{aligned} & 3.6 \\ & 9.3 \end{aligned}$		
1.12	Other			
COM	ENTS ITEM I			

2	Roadwork Speed Zones (RSZ)		Rating	
			1	2
2.1	Has the RSZ zone been authorised ?	8.2.6		
2.2	Is a copy of the SZA form held on site ?	8.2.6		
2.2	Has the SZA form been sent to local Police?	8.2.6(a)		
2.3	Are records being kept of the times of RSZ installation?	8.2.7		
2.4	Where a RSZ is in place, is the limit appropriate for the works being undertaken?	8.2.3		
2.5	Is the speed limit/s operating within the approved times?	8.2.6		
2.5	Is the length of the speed zone as per TCWS ?	8.2.4(b)		
2.6	Are Advanced Speed Warning Signs used appropriately?	8.2.5(a)		
2.7	Are Speed signs duplicated at the start of the speed zone?	8.2.5(a)		
2.8	Are speed signs the correct size?	8.2.5(b)		
2.9	Are all signs installed at the correct spacing ?	8.2.5(a)		
2.10	Are all signs installed at the correct height ?	8.2.5(c)		
2.11	Have conflicting speed zone signs and pavement markings been covered/removed ?	8.2.5(e)		
2.12	Are repeater signs installed if required ?	8.2.5(a)		
2.13	Are "ENFORCED" signs required and installed ?	8.2.5(f)		
2.14	At the end of the work, has the pre-existing speed limit been reinstated?	8.2		
2.15	Are signs covered adequately when not in use ?	3.4.1;8.2		
2.16	Other			
COMMENTS ITEM 2				

3	Record keeping		Rating	
			1	2
3.1	Are records being kept for roadwork speed zones?	8.2.6		
3.2	Are records kept as required in Appendix E?	6.1		
3.2.1	By the Works Supervisor?	6.1.1		
3.2.2	By the Team Leader?	6.1 .2		
3.3	RA is available on site and being kept with TCP?	App D		
3.4	Where PTS are used, is the form Record of Approval and Use completed and retained?	T 10.7		
3.5	Other			
COM	ENTS ITEM 3			

4	Traffic Controllers (TCs)		Rating	
			1	2
4.1	Are Traffic Controllers (TCs) being used ? (Night work - 4.13)	8.1		
4.2	Are the correct number of TCs being used?	8.1 .3		
4.3	Have TC Certificates been sighted and the No's recorded?	GIO		
4.4	Is TCs high visibility clothing in good repair ?	8.1.1 (a)		
4.5	Are all TCs displaying the Road Authority's logo and Authorised Traffic Controller?	8.1.1 (c)		
4.6	Is the traffic speed restricted to a max of $60 \mathrm{~km} / \mathrm{h}$?	8.1.1 (d)		
4.7	Is the sight distance to approaching traffic 1.5 D or greater?	8.1.1 (e)		
4.8	Do TCs have a clear escape route?	8.1 .4		
4.9	Has provision been made to prevent end of queue accidents?	8.1.1 (e)		
4.10	Are TCs able to communicate with each other (line of sight, two way radios, additional TCs) ?	$\begin{aligned} & \text { 8.I.1 (f) } \\ & 3.5 .7 \\ & \hline \end{aligned}$		
4.11	Are the PREPARE TO STOP (TI-18) and Traffic Controller Ahead (TI-34, TI-200-2/3) signs correctly displayed ?	$\begin{aligned} & 8.1 .1(\mathrm{a}) ; \\ & 8.1 .4 \end{aligned}$		
4.12	Are the above signs covered or removed when not required?	8.1.4		

4	Traffic Controllers (TCs) (continued)		Rating	
			1	2
4.13	Are they controlling traffic in accordance with Instructions to Traffic Controllers?	8.1.4		
4.14	If TCs are being used for night work:- a. are they wearing approved clothing ? b. are they safely lit and visible ? c. do they have correct communication ? d. are they using lighted wands ?	8.1.5		
4.15	Other			
COMMENTS ITEM 4				
5	Portable Traffic Signals (PTS)		Rating	
			1	2
5.1	Are PTS being used?			
5.2	Are the PTS formally approved for use ? (This may be included on the TCP approval.)	$\begin{array}{\|l} \hline 4.4 .3, \\ 10.5 \end{array}$		
5.3	Are the PTS being used marked as complying with RTA Specification PTS/3?	10.2		
5.4	Are the PTS correctly registered?			
5.5	Is the approach speed of traffic reduced to $60 \mathrm{~km} / \mathrm{h}$ or less?	10.7.2		
5.6	Is minimum sight distance of 150 metres provided?	10.7.3		
5.7	Are the PTS been correctly sighted and established?	10.7.1		
5.8	Has a Holding Line been marked on the roadway?	TCP43		
5.9	Are procedures in place to review the end-of-queue when PTS are operating?	3.5.7		
5.10	Have all signs associated with PTS been erected correctly ?	TCP43		
5.11	Other			
COMMENTS ITEM 5				

6	Flashing Arrow Sign (FAS)		Rating	
			1	2
6.1	Is a FAS being used?			
6.2	Is the FAS being used marked as complying with RTA either Specification FAS/4 or FAS/5?	11.2		
6.3	Is it located correctly?	11.4.4		
6.4	Is it the correct size sign ?	$\begin{aligned} & \text { 3.2.10; } \\ & 11.4 .1 \end{aligned}$		
6.5	Is the correct Mode of Operation being used?	Table II.I		
6.6	If Lane Status signs (T2-6 series) are being used in conjunction with FAS, is the message to the motorist the same ?			
6.7	Other			
COMMENTS ITEM 6				
7	Variable Message Sign (VMS)		Rating	
			1	2
7.1	Is a variable message sign being used, as specified in TCWS ?	3.2.8		
7.2	Is the message related to the road or bridge works?	3.2.8		
7.3	Are there less than 4 words per screen and no more than 2 screens on display?	3.2.8		
7.4	Is the sign located in a safe position ?			
7.5	Is the VMS fitted with flashing blue and red lights? If yes have them switched off/removed.			
7.6	Other			
COM	MENTS ITEM 7			

7	Safety Barriers		Rating	
			1	2
8.1	Are safety barriers installed correctly ?	9.6		
8.2	Have the correct barriers been installed ?	$\begin{aligned} & 9.6 \& \\ & 3.3 .7 \end{aligned}$		
8.3	Where barrier sections are used as Safety Barriers, are they in compliance with AS3845 ?	9.6		
8.4	Where non rigid barrier systems are used as safety barriers, is work behind the barrier prohibited from the deflection zone?	9.6 .5		
8.5	Are water filled safety barrier elements full of water			
8.6	Is the safety barrier erected as designed (incorporating end protection) ?	9.6.1		
8.7	Has the approach speed of traffic been reduced to the barrier design rating ?			
8.8	Other			
COM	EENTS ITEM 8			
9				
			1	2
9.1	Are all signs and devices in good condition ?	4.4.1		
9.2	Are the signs clearly visible and not affected by other signs, plant items, vegetation, shade, light glare etc ?	3.1.1		
9.3	Are sign faces in compliance with ASI 742.3 and have Class I retroreflective material ?	3.2.1		
9.4	Are the correct sign sizes being used ?	3.2 .2		
9.5	Are signs duplicated, where required ?	3.2.4		
9.6	Are signs erected at the correct height and position	3.2 .8		
9.7	Are the signs erected to give the correct sight distance?	3.2 .8		
9.8	Are signs displayed on frangible mounts ?	3.2 .7		
9.9	Are barrier boards sighted at right angles to the flow of traffic ?	3.3.1		

9	Signs and Devices (contined)		Rating	
			1	2
9.10	Are there any contradictory or superfluous signs, devices or markings?	4.3.2		
9.11	Have the needs of pedestrians been provided for?	9.3		
9.12	Have the needs of cyclists been provided for?	9.4		
9.13	Are all property accesses to the site controlled?	9.7		
9.14	Are all cones and bollards installed at the correct spacing?	5.2.2		
9.15	Are the correct sized cones and bollards being used ?	3.3.3		
9.16	Where tapers are used, have they been identified as lateral shift or merge tapers and are they the correct length ?	$\begin{array}{\|l\|} \hline 5.2 \\ \text { Table } \\ 5.2 \\ \hline \end{array}$		
9.17	Where there are 3 lanes of traffic or more in one direction and two lanes are closed, are the separate merge tapers of the correct length ?	5.2.9		
9.18	Are the 2 tapers separated by at least I.5 D	5.2 .9		
9.19	Where work is beyond a crest or curve, has the taper been set up before the crest or curve?			
9.20	Where temporary pavement marking and markers are used, do they comply with the requirements of TCWS Manual?	3.3.6		
9.21	Other			
COMMENTS ITEM 9				

11	Workers on foot near plant		Rating	
11.1	Have workers working within 3 metres of plant been trained/briefed/tool-boxed on requirements of TCWS and RTA TIP Sheet ?	9.23		
11.2	Where workers are working close to revolving plant, are satisfactory risk controls in place ?	9.23		
11.3	Has a VMP been developed where the conditions listed in TCWS occur on site ?	9.23 .1		
11.5	Are spotters being used near reversing plant or delivery vehicles ?	9.23		
Other				

12	Works Traffic (VMPs)		Rating	
			1	2
12.1	Have acceleration and deceleration lanes been provided?	7.2		
12.2	Are U turns being undertaken safely?	7.3		
12.3	Are reversing movements being undertaken safely?	7.3		
12.4	Are signs provided for stock pile sites etc ?	7.7		
12.5	Are median crossovers being used correctly?	7.8		
12.6	Has a VMP been approved and provided? Written VMP shall be prepared in $100 \mathrm{~km} / \mathrm{h}$ zones.	$\begin{aligned} & 7.5 ; 7.6 \\ & 9.23 .1 \end{aligned}$		
12.7	Does the person authorising the VMP have traffic control qualifications? If so, what qualifications?			
12.8	Have access and egress to the site been safely provided?	7.2		
12.9	Are delivery vehicles required to report to a designated location/person? Is it happening on site?	9.23		
12.10	Other			
COMMENTS ITEM 12				

13	Miscellaneous		Rating	
13.1	For intermittent work are all requirements met ?	9.1 .2		
13.3	Where a spotter is used, are all requirements being met?	For mobile work are all requirements being met ? If the work is conducted at night are all requirements being met ?	9.17	
13.5	Where travelling plant or vehicles travel slower than 20 km/h below the normal road speed limit, do they comply with the requirements of TCWS ?	9.1 .3, 9.1 .10		
13.6	Other			
COMMENTS ITEM I3				
ADDITIONAL COMMENTS				

DAILY CHECKLIST - TRAFFIC CONTROL AT SHORT TERM WORK SITES

SITE SUPERVISOR: \qquad DATE: \qquad

REPORTING OFFICE/COMPANY:

SITE:	I		2		3		4	
TCP No:								
INSPECTION:	Pre- Start	Pre- Close	Pre- Start	Pre- Close	Pre- Close	Pre- Start	Pre- Close	Pre- Start
TIME: (24 hrs)								

All signs used during the work are to be recorded below, using the following codes:
\boldsymbol{Y}-signs and devices are in place during pre-start check and between shifts.
\boldsymbol{N}-signs and devices are no longer required at pre-close down check.
X-signs and devices are damaged, vandalised or missing.

Signs and devices:				
Traffic Signals time operational	To	To	To	To
Appr No				
Temp Speed time operational	To	To	To	To
Appr No				
Speed (km/h)				
Supervisor's Initials:				

SITE I

SITE 2

SITE 3

SITE 4

WEEKLY CHECKLIST - TRAFFIC CONTROL AT LONG TERM WORK SITES

NATURE OF WORK

\qquad TCP No \qquad

LOCATION \qquad

REPORTING OFFICE/COMPANY

DATE								
INSPECTION	Pre- Start	Pre- Close	Pre- Start	Pre- Close	Pre- Close	Pre- Start	Pre- Close	Pre- Start
TIME: (24 hrs)								

All signs used during the work are to be recorded below, using the following codes:
Y-signs and devices are in place during pre-start check and between shifts.
\mathbf{N}-signs and devices are no longer required at pre-close down check.
X-signs and devices are damaged, vandalised or missing.

Signs and devices				
Traffic Signals time operational	To	To	To	To
Appr No				
Temp Speed time operational	To	To	To	To
Appr No				
Speed (km/h)				
Supervisor's Initials:				

COMMENTS:

This page intentionally left blank

[^0]: ${ }^{1}$ SIDRA Intersection is an intersection analysis software package, which estimates intersection capacity, level of service, performance, and predicts the effectiveness of intersection operation.

[^1]: *Note auxiliary lane lengths indicative. Bus bay/u-turn facility shown indicatively.

