

Air Quality Monitoring

Connell Wagner Pty Ltd ABN 54 005 139 873 116 Military Road Neutral Bay New South Wales 2089 Australia

Telephone: +61 2 9465 5599 Facsimile: +61 2 9465 5598 Email: cwsyd@conwag.com

www.conwag.com

Air Quality Monitoring

Sapphire to Woolgoolga Pacific Highway Upgrade

Roads & Traffic Authority

9 August 2007 Reference 1093.28/ Revision

Table of Contents

n	Page
Introduction	1
Introduction	1
Summary of Results	2
Conclusions	4
	Introduction Summary of Results

Appendix A Environmental Report – Ambient Air Monitoring Sapphire to Woolgoolga

1. Introduction

As part of the Environmental Assessment process for the proposed upgrade of the Pacific Highway between Sapphire and Woolgoolga (the Proposal), an air quality monitoring station was established at Korora. Air quality monitoring has been undertaken to provide air quality data for a typical section of dual carriageway on the Pacific Highway in or adjacent to a regional centre. The monitoring has been undertaken more to provide additional information to the community regarding air quality rather than being motivated by standard assessment practice or by apparent air quality issues in the area.

The monitoring station was located approximately 0.5 km from the southern extent of the Proposal, on the northern side of the Korora Rural Fire Service shed, approximately 20m from the western edge of the existing four lane dual carriageway Pacific Highway (refer **Figure 1**). To the west of the monitoring station site is the Korora Nature Reserve, while to the east is the Pacific Highway, Korora Public School and adjacent residential areas.

The sign posted speed limit for the Pacific Highway adjacent to the monitoring site is 100 km/h. While the 2006 annual average daily traffic volume on this section of the highway is approximately 20,500 vehicles per day (veh/day), the period of air quality monitoring at Korora included the 2005/06 Christmas and New Year holidays when traffic volumes were substantially higher than annual average daily traffic volumes. The monitoring equipment is located at a point on the highway where there is a climbing gradient of 5.2% from north to south (ie southbound lanes are climbing).

The Korora monitoring station was established to provide data on air quality adjacent to the Pacific Highway. The air quality monitoring site at Korora is understood to be the first such installation for air quality data collection for a Pacific Highway upgrade project. The monitoring station was equipped to monitor the following air quality and meteorological parameters:

- Carbon monoxide (CO)
- Oxides of Nitrogen (NO_x)
- Nitrogen Dioxide (NO₂)
- Nitrogen monoxide (NO)
- Particulate matter (fine particles 10 micrometres(μm) or less in size) (PM₁₀)
- Particulate matter (fine particles 2.5 micrometres (μm) or less in size) (PM_{2.5})
- Wind speed
- Wind direction
- Air temperature
- Relative humidity

Due to the proximity of the monitoring site to the Pacific Highway, the concentrations of air quality parameters measured include traffic emissions. Therefore, the concentrations detected are likely to be higher than the background levels for the local area and will give a conservative indication of the air quality experienced on the NSW north coast.

Monitoring was undertaken at the site between 14 October 2005 and 31 January 2006. Specific details of the monitoring station are provided in Appendix A.

Figure 1

2. Summary of Results

This section provides a brief summary of the results of the data collected over the monitoring period, with the full results presented in Appendix A.

In setting air quality goals for NSW, the Department of Environment and Climate Change (DECC), incorporating the Environment Protection Authority (EPA), has looked to the air quality standards outlined by the *National Environment Protection Council of Australia*, which are part of the National Environment Protection Measures (NEPMs). Three of the parameters measured at the Korora monitoring site are outlined in the NEPM for ambient air quality. These parameters are identified in Table 1 on the following page, as is an advisory reporting standard for PM_{2.5}. The DECC's assessment goals are numerically equivalent to the NEPM goals, but do not allow for any exceedances.

There are no NEPM goals for the parameters NO and NO_x. Key results for the Korora monitoring station were as follows:

- The maximum 8-hour average CO concentration was 0.3 mg/m³, compared with the NEPM goal of 10 mg/m³. The 8-hour average CO data is shown in Section 2.5 of Appendix A.
- The maximum 1-hour average NO₂ concentration was 69.6 μg/m³ compared with the NEPM goal of 246 μg/m³. The 1-hour average NO₂ data is shown in Section 2.6 of Appendix A.
- The maximum 24-hour average PM_{10} and $PM_{2.5}$ concentrations were 37.8 $\mu g/m^3$ and 15.4 $\mu g/m^3$ compared with the NEPM goals of 50 $\mu g/m^3$ and 25 $\mu g/m^3$ respectively. 24-hour average PM_{10} and $PM_{2.5}$ data is shown in Section 3.5 and Section 3.6 of Appendix A respectively.

Table 1: National Environment Protection Measure for Ambient Air Quality

Pollutant	Averaging	NE	PM Goals	Kore	ora Monitoring R	esults
	Period	Maximum Concentration	Goal within 10 years (Maximum Allowable Exceedence)	Maximum Recorded Concentration	Recorded 90 th percentile Concentration	Average Recorded Concentration
National Standards and Goals for Ambient Air Quality						
СО	8 hrs	9.0 ppm (10 mg/m³)	1 day a year	0.2 ppm (0.3 mg/m ³)	0.07 ppm (0.08 mg/m ³)	0.03 ppm (0.04 mg/m ³)
NO ₂	1 hr	0.12 ppm (246 µg/m³)	1 day a year	0.037 ppm (69.6 µg/m³)	0.010 ppm (18.81 µg/m³)	0.004 ppm (9.2 μg/m³)
Particles as PM ₁₀	1 day	50 μg/m ³	5 days a year	37.8 µg/m³	29.8 μg/m ³	20.3 μg/m ³
			Advisory Reporting	Goals		
Particles as PM _{2.5}	1 day	25 μg/m ³	Goal is to gather sufficient data nationally to facilitate a review of the goal	15.4 μg/m³	10.8 µg/m ³	7.7 µg/m³

3. Conclusions

The purpose of the monitoring station at Korora was to establish the level of current emissions due to traffic on the Pacific Highway to ensure that air quality close to the road is satisfactory and that the Proposal would not have a significant impact on ambient air quality.

The monitoring station was set up to monitor a likely "worst case" situation, with the station being close (20m) to the western edge of a four lane section of highway with a significant climbing grade (5.2 percent) and was conducted over the peak traffic (November, December, January) Christmas holiday period.

The results of the Korora monitoring station indicate that immediately adjacent to the highway, peak readings, and the commonly used 90th percentile readings, of the regulated emissions (CO, NO₂ and PM₁₀) were all considerably less than the limits specified in the National Environment Protection Measure. Consequently, the recorded air quality at the Korora monitoring station was considerably better than the air quality goals specified in the National Environment Protection Measure.

The non-regulated PM 2.5 was also measured. The levels of PM 2.5 peaked at 15.4 ug/m3 against a possible National Environment Protection Measure goal of 25ug/m3. The 90th percentile reading was 10.8 µg/m³.

The highest emission readings generally occurred during holiday periods or at night. On occasions these higher readings could have been due to traffic on the dirt access track next to the monitoring station, activity around the Rural Fire Service shed or to bush fires.

The National Environment Protection Measure goals are actually ambient air quality goals that are intended to be applied at locations away from the influence of significant emission sources. Dispersion would reduce the pollutant levels significantly as the distance from the road increases. For example, levels 100 metres from the road would be closer to ambient levels and would be around half of the levels recorded at the monitoring station.

As the Proposal is predicted to carry less vehicle traffic than at Korora (volumes reduce with distance north from Coffs Harbour), and have a lower grade than the Korora stretch of highway (maximum grade to be 4 percent), it is anticipated that during operation, the Proposal would also comply with the National Environment Protection Measure goals.

Construction air quality impacts are predictable and can be adequately addressed through standard good practice mitigation measures which would be outlined in the Air Quality Management Plan which would form part of the Construction Environmental Management Plan (CEMP) for the Proposal.

Appendix A

Environmental Report – Ambient Air Monitoring Sapphire to Woolgoolga

Connell Wagner Pty Ltd ABN 54 005 139 873 116 Military Road Neutral Bay New South Wales 2089 Australia

Telephone: +61 2 9465 5599 Facsimile: +61 2 9465 5598 Email: cwsyd@conwag.com

www.conwag.com

Korora Air Quality Monitoring Paper Sapphire to Woolgoolga Pacific Highway Upgrade NSW Roads and Traffic Authority

7 March 2007 Reference 109328GE

NATA Accredited Laboratory - Connell Wagner

Number: 4669

The following parameters are included in the scope of accreditation.

Air monitoring parameters – carbon monoxide; light scattering; nitrogen oxides; ozone; particulates- PM_{10} , total suspended; sulfur dioxide

Meteorological parameters and Radiation – global, net; rainfall; relative humidity; temperature; wind direction; wind speed – horizontal.

Prepared by:

Michelle Manditch.

Checked by:

Maurice Stewartson

NATA Signatory/ Air Monitoring:

M. Strutu.

M. Struty.

Maurice Stewartson.

Disclaimer

Important Things You Should Know About This Report

Exclusive Benefit and Reliance

This report have been prepared by Connell Wagner Pty Ltd, at the request of and exclusively for the benefit and reliance of its Client

This report is not a certification, warranty or guarantee. It is a report scoped in accordance with the Client's instructions, having due regard to the assumptions that Connell Wagner Pty Ltd can be reasonably expected to make in accordance with sound engineering practice and exercising the obligations and the level of skill, care, and attention required of it under this contract.

Third Parties

It is not possible to make a proper assessment of the report without a clear understanding of the terms of engagement under which the report has be prepared, including the scope of the instructions and directions given to and the assumptions made by the engineer/ scientist/ technician who has prepared the report.

The report is a report scoped in accordance with instructions given by or on behalf of the Client. The report may not address issues which would need to be addressed with a third party if that party's particular circumstances, requirements and experience with such reports were known and may make assumptions about matters of which a third party is not aware.

Connell Wagner therefore does not assume responsibility for the use of the report by any third party and the use of the report by any third party is at the risk of that party.

Inherent Risk

The owner, operator or prospective purchaser of any plant or asset necessarily assumes the risk of there being defects inherent in the plant or asset. The information contained in this report can assist an owner or prospective purchaser [or "whatever"] in making an assessment of that risk but does not eliminate that risk.

Limits of Investigation and Information

The report is also based on information provided to Connell Wagner by other parties. The report is provided strictly on the bases that the information that has been provided can be relied on and is accurate, complete and adequate.

Connell Wagner takes no responsibility and disclaims all liability whatsoever for any loss or damage that the Client may suffer resulting from any conclusions based on information provided to Connell Wagner, except to the extent that Connell Wagner expressly indicates in the report that it has verified the information to it's satisfaction.

Contents

Section	on	Page
Dis	claimer	ii
	Important Things You Should Know About This Report	ii
	Exclusive Benefit and Reliance	ii
	Third Parties	ii
	Inherent Risk	ii
	Limits of Investigation and Information	ii
1.	Introduction	1
	1.1 Korora	1
2.	Carbon Monoxide and Oxides of Nitrogen Summaries	2
	2.1 Korora October 2005 Summary	2
	2.2 Korora November 2005 Summary	3
	2.3 Korora December 2005 Summary	4
	2.4 Korora January 2006 Summary	5
	2.5 8-hour average CO concentrations October 2005 to January 2006	6 7
	2.6 1-hour average NO ₂ concentrations October 2005 to January 2006	1
3.	PM10 and PM2.5 monthly summary	8
	3.1 October 2005	8
	3.2 November 2005	9
	3.3 December 2005	10
	3.4 January 2006 3.5 24-hour average PM ₁₀ concentrations October 2005 to January 2006	11 12
	 3.5 24-hour average PM₁₀ concentrations October 2005 to January 2006 3.6 24-hour average PM_{2.5} concentrations October 2005 to January 2006 	13
4	Climatia ayanba	4.4
4.	Climatic graphs	14
	4.1 October 2005 Windrose	14
	4.2 November 2005 Windrose4.3 December 2005 windrose	15 16
	4.4 January 2006 windrose	17
	4.4 January 2000 Windrose	17
5.	Temperature Graphs	18
	5.1 October 2005 Temperature Graph	18
	5.2 November 2005 temperature graph	19
	5.3 December 2005 temperature graph	20
	5.4 January 2006 temperature graph	21
6.	Relative Humidity Graphs	22
	6.1 October 2005 relative humidity graph	22
	6.2 November 2005 relative humidity	23
	6.3 December 2005 relative humidity	24
	6.4 January 2006 relative humidity	25
7.	Solar Radiation Graphs	26
	7.1 October 2005 solar radiation graph	26
	7.2 November 2005 solar radiation graph	27

7.3 7.4	 28 29

1. Introduction

1.1 Korora

Technical features of the Monitoring Station include:

- Availability is total instrument availability less time taken by nightly zero/span checks of 1 hour and any other calibrations or maintenance.
- All data is in Eastern Standard Time.
- Sample head height is 4.5 meters.
- Anemometer mast height is 10 meters.
- The site is situated in a urban region, grid reference (MGA Zone 56):

Easting – 512570 Northing – 6653105

This site meets:

AM-3: AS3580.2.1 and 2.2 Preparation of reference test atmospheres

AM-6: AS3580.7.1 Determination of carbon monoxide - Direct reading instrument method.

AM-12: AS3580.5.1 Determination of oxides of nitrogen - Chemiluminescence method.

AM-1: AS 2922 Ambient Air-Guide for the siting of sampling units.

AM-4 USEPA (1987) EPA 450/4-87-013 On-site meteorological program guidance for regulatory modelling applications.

2. Carbon Monoxide and Oxides of Nitrogen Summaries

2.1 Korora October 2005 Summary

Sapphire Woolgoolga: Korora

October 2005

	CO ppm	NO ₂ ppm	NOx ppm	NO ppm
% Sampling Time	26	26		
Daily 1 Hour Averages Monthly Average 90 th Percentile Value:	0.024 0.055	0.005 0.010	0.007 0.016	0.002 0.007
Max Value 1 Hour: Min Value 1 Hour: Max Value 24 Hour:	0.323 0.002	0.029 0.001 0.008	0.059 0.000 0.013	0.042 0.000 0.005
NEPM Goals 1 Hour Exceedances: 8 Hour Exceedances:	0	0		
% of Time Exceeded: No. of Days Exceeded:		NIL NIL		

2.2 Korora November 2005 Summary

Sapphire Woolgoolga: Korora

November 2005

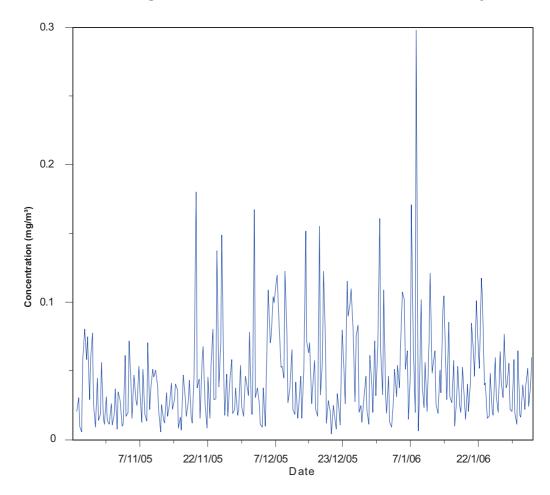
	CO ppm	NO ₂ ppm	NOx ppm	NO ppm
% Sampling Time	96	96		
Daily 1 Hour Averages				
Monthly Average	0.025	0.004	0.007	0.003
90 th Percentile Value:	0.054	0.009	0.016	0.007
Max Value 1 Hour:	0.372	0.017	0.041	0.029
Min Value 1 Hour:	0.001	0.000	0.000	0.000
Max Value 24 Hour:		0.008	0.015	0.007
NEPM Goals				
1 Hour Exceedances:		0		
8 Hour Exceedances:	0			
% of Time Exceeded:		NIL		
No. of Days Exceeded:		NIL		

2.3 Korora December 2005 Summary

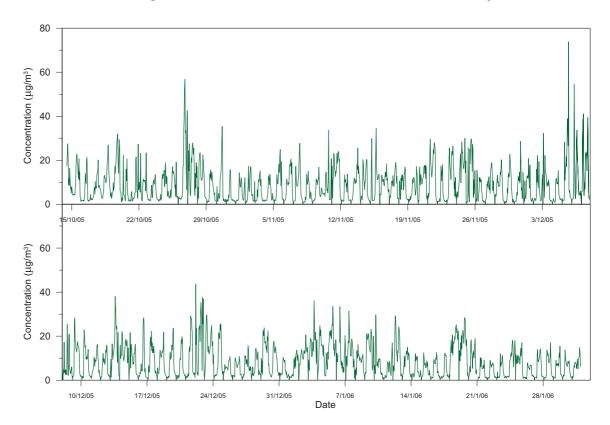
Sapphire Woolgoolga: Korora

December 2005

	CO ppm	NO ₂ ppm	NOx ppm	NO ppm
% Sampling Time	96	96		
Daily 1 Hour Averages				
Monthly Average	0.037	0.005	0.007	0.002
90 th Percentile Value:	0.083	0.010	0.016	0.007
Max Value 1 Hour:	0.500	0.037	0.055	0.031
Min Value 1 Hour:	0.002	0.000	0.000	0.000
Max Value 24 Hour:		0.010	0.012	0.004
NEPM Goals				
1 Hour Exceedances:		0		
8 Hour Exceedances:	0			
% of Time Exceeded:		NIL		
No. of Days Exceeded:		NIL		


2.4 Korora January 2006 Summary

Sapphire Woolgoolga: Korora


January 2006

	CO ppm	NO ₂ ppm	NOx ppm	NO ppm
% Sampling Time	95	95		
Daily 1 Hour Averages Monthly Average 90 th Percentile Value:	0.035 0.069	0.004 0.009	0.008 0.018	0.004 0.010
Max Value 1 Hour: Min Value 1 Hour: Max Value 24 Hour:	1.003 0.002	0.017 0.000 0.009	0.044 0.000 0.020	0.034 0.000 0.011
NEPM Goals		0		
1 Hour Exceedances: 8 Hour Exceedances:	0	0		
% of Time Exceeded:		NIL		
No. of Days Exceeded:		NIL		

2.5 8-hour average CO concentrations October 2005 to January 2006

2.6 1-hour average NO₂ concentrations October 2005 to January 2006

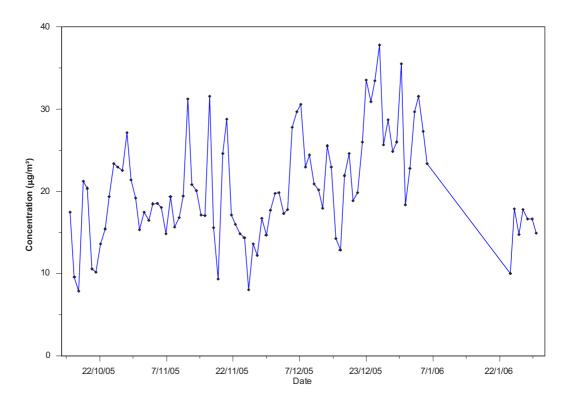
3. PM10 and PM2.5 monthly summary

3.1 October 2005

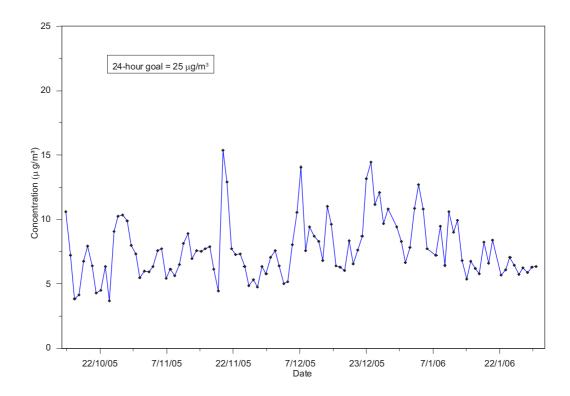
	Wind	Wind			
	Speed	Direction	Sigma	PM10	PM2.5
Date	m/s	deg	Theta deg	μg/m³	μg/m³
1/10/2005			J		
2/10/2005					
3/10/2005					
4/10/2005					
5/10/2005					
6/10/2005					
7/10/2005					
8/10/2005					
9/10/2005					
10/10/2005					
11/10/2005					
12/10/2005					
13/10/2005					
14/10/2005					
15/10/2005					
16/10/2005					
17/10/2005					
18/10/2005					
19/10/2005					
20/10/2005					
21/10/2005					
22/10/2005					
23/10/2005					
24/10/2005					
25/10/2005					
26/10/2005	0.9	324	34	23	10
27/10/2005	0.3	349	42	23	10
28/10/2005	0.4	135	41	27	10
29/10/2005	1.4	22	27	21	8
30/10/2005	0.6	358	44	19	7
31/10/2005	0.6	334	35	15	5

3.2 November 2005

	Wind	Wind	Sigma		
	Speed	Direction	Theta	PM 10	PM 2.5
Date	m/s	deg	deg	μg/m³	μg/m³
1/11/2005	0.9	15	33	17	6
2/11/2005	1.1	10	33	18	6
3/11/2005	1.7	10	34	18	6
4/11/2005	1.2	6	43	18	8
5/11/2005	0.2	96	35	18	8
6/11/2005	1.0	173	49	15	5
7/11/2005	0.5	61	29	19	6
8/11/2005	1.0	12	31	16	6
9/11/2005	1.3	11	40	17	6
10/11/2005	1.2	351	42	20	8
11/11/2005	0.7	142	44	31	9
12/11/2005	1.2	14	27	21	7
13/11/2005	0.9	165	47	20	8
14/11/2005	0.4	73	40	17	7
15/11/2005	0.4	238	39	17	8
16/11/2005	2.3	185	53	31	8
17/11/2005	1.5	191	53	15	6
18/11/2005	0.1	71	38	9	4
19/11/2005	1.0	23	44	24	15
20/11/2005	0.8	162	45	28	13
21/11/2005	0.5	152	46	17	8
22/11/2005	0.6	350	31	16	7
23/11/2005	0.3	139	42	14	7
24/11/2005	0.5	136	48	14	6
25/11/2005	0.1	238	37	8	5
26/11/2005	0.8	17	40	13	5
27/11/2005	0.4	17	44	12	5
28/11/2005	0.9	171	52	16	6
29/11/2005	0.7	356	29	14	6
30/11/2005	1.2	4	40	17	7

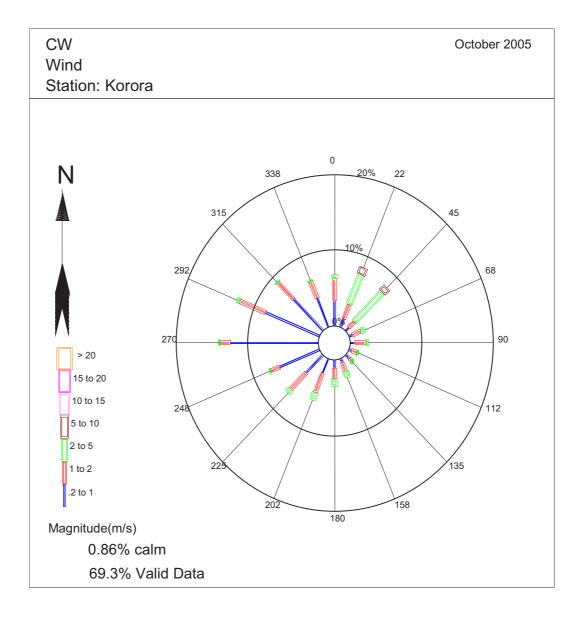

3.3 December 2005

	Wind	Wind	Sigma		
	Speed	Direction	Theta	PM 10	PM 2.5
Date	m/s	deg	deg	μg/m³	μg/m³
1/12/2005	1.2	11	35	20	8
2/12/2005	1.1	348	36	20	6
3/12/2005	0.4	67	33	16	5
4/12/2005	0.5	9	27	17	5
5/12/2005	0.4	31	27	26	8
6/12/2005	0.6	338	33	28	11
7/12/2005	0.4	337	44	31	14
8/12/2005	0.4	301	42	22	7
9/12/2005	0.6	172	34	24	9
10/12/2005	0.4	41	20	20	9
11/12/2005	0.5	151	51	20	8
12/12/2005	0.4	138	42	18	7
13/12/2005	0.3	38	39	25	11
14/12/2005	1.6	177	47	22	10
15/12/2005	0.6	73	43	14	6
16/12/2005	0.4	314	44	13	6
17/12/2005	0.5	34	31	21	6
18/12/2005	0.4	150	34	23	8
19/12/2005	0.1	156	32	17	6
20/12/2005	0.8	11	23	19	8
21/12/2005	0.4	12	30	25	9
22/12/2005	0.0	71	41	33	13
23/12/2005	0.5	98	40	31	14
24/12/2005	0.6	338	34	32	11
25/12/2005	1.1	157	38	37	12
26/12/2005	0.8	53	26	26	10
27/12/2005	1.4	28	31	28	11
28/12/2005	0.8	3	40	23	6
29/12/2005	0.5	58	41	26	9
30/12/2005	1.7	30	37		8
31/12/2005	2.1	17	37	18	7


3.4 January 2006

	Wind	Wind	Sigma		
	Speed	Direction	Theta	PM 10	PM 2.5
Date	m/s	deg	deg	μg/m³	μg/m³
1/01/2006	1.0	11	42	23	8
2/01/2006	1.0	165	43	30	11
3/01/2006	0.4	130	42	31	13
4/01/2006	0.7	186	47	27	11
5/01/2006	0.5	129	46	22	8
6/01/2006	0.5	176	52		2
7/01/2006	0.8	135	44		7
8/01/2006	1.0	155	50		9
9/01/2006	0.6	150	44		6
10/01/2006	1.5	23	36		9
11/01/2006	1.2	11	41		9
12/01/2006	0.5	159	49		10
13/01/2006	0.6	32	36		7
14/01/2006	0.7	24	33		5
15/01/2006	0.7	37	24		7
16/01/2006	1.1	22	28		6
17/01/2006	0.8	348	36		6
18/01/2006	0.9	177	51		8
19/01/2006	0.5	176	49		7
20/01/2006	0.1	64	40		8
21/01/2006	0.7	26	20		7
22/01/2006	0.6	29	24		6
23/01/2006	1.3	21	39		6
24/01/2006	1.0	30	39	9	7
25/01/2006	0.4	201	48	17	6
26/01/2006	0.5	47	25	14	6
27/01/2006	0.7	27	29	18	6
28/01/2006	0.3	32	26	17	6
29/01/2006	0.2	116	33	17	6
30/01/2006	0.3	121	41	15	6
31/01/2006	0.5	160	41	17	7

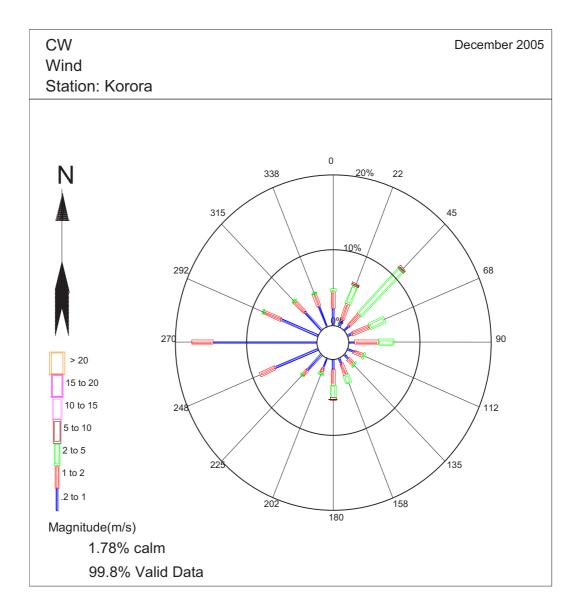
3.5 24-hour average PM₁₀ concentrations October 2005 to January 2006

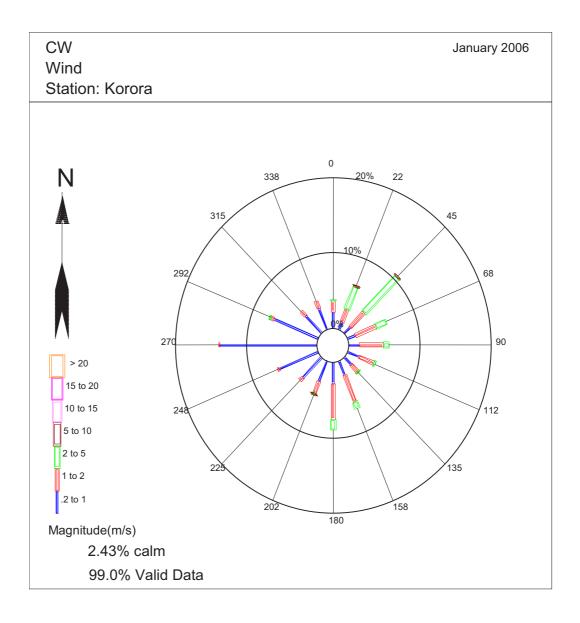


3.6 24-hour average PM_{2.5} concentrations October 2005 to January 2006

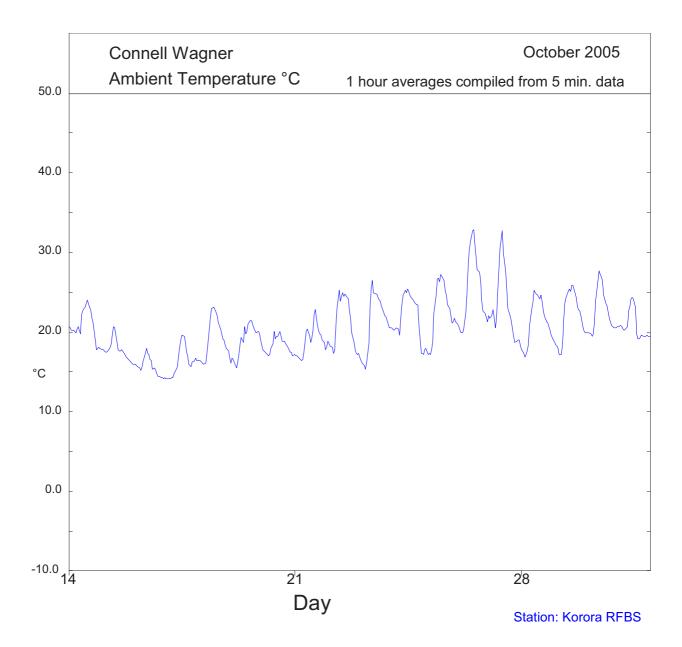


4. Climatic graphs

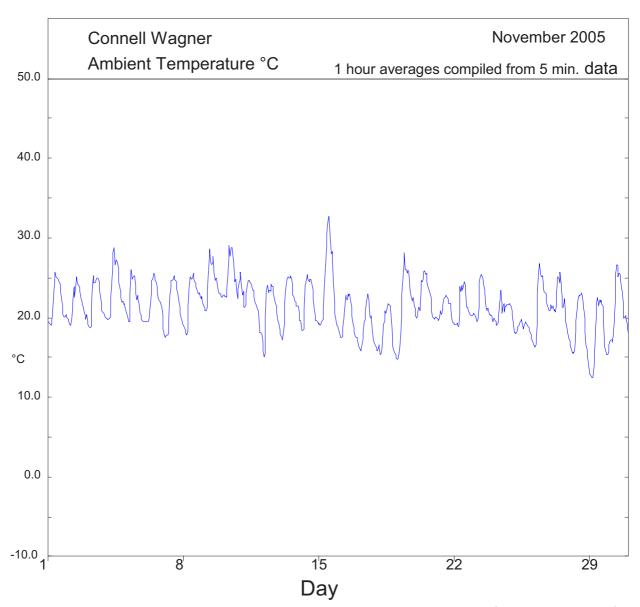

4.1 October 2005 Windrose


4.2 November 2005 Windrose

4.3 December 2005 windrose

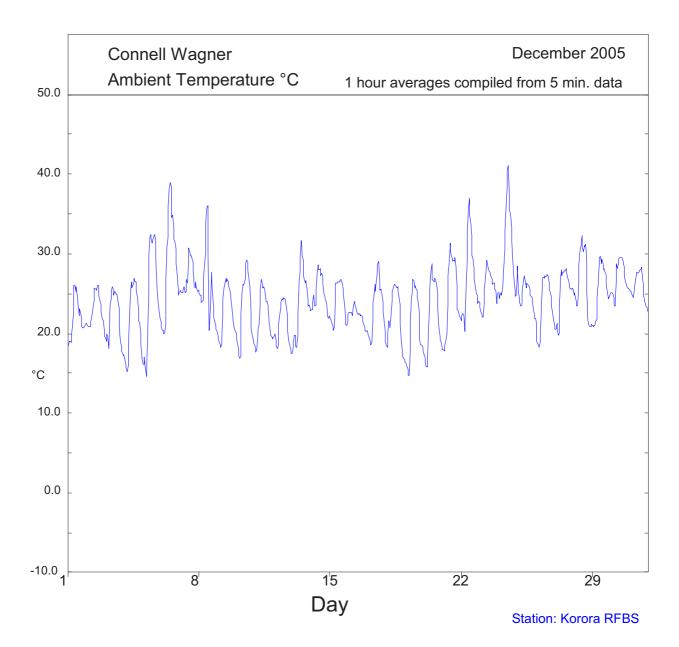


4.4 January 2006 windrose

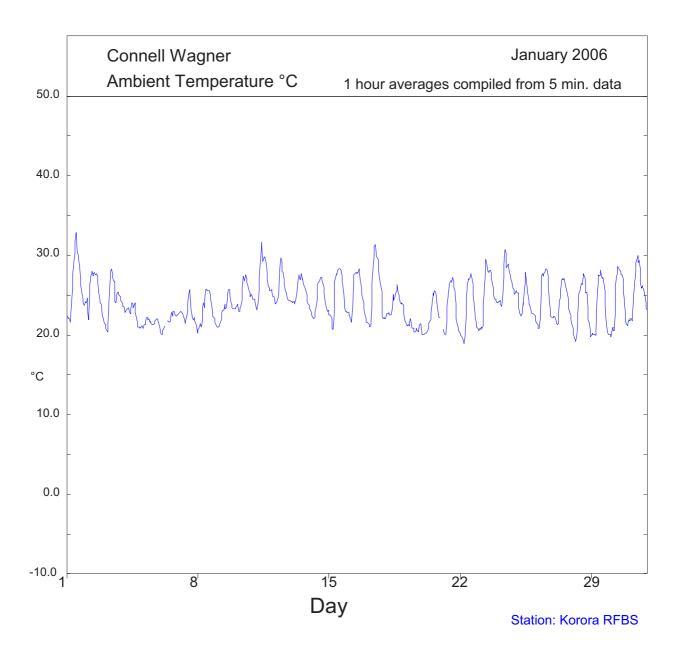


5. Temperature Graphs

5.1 October 2005 Temperature Graph

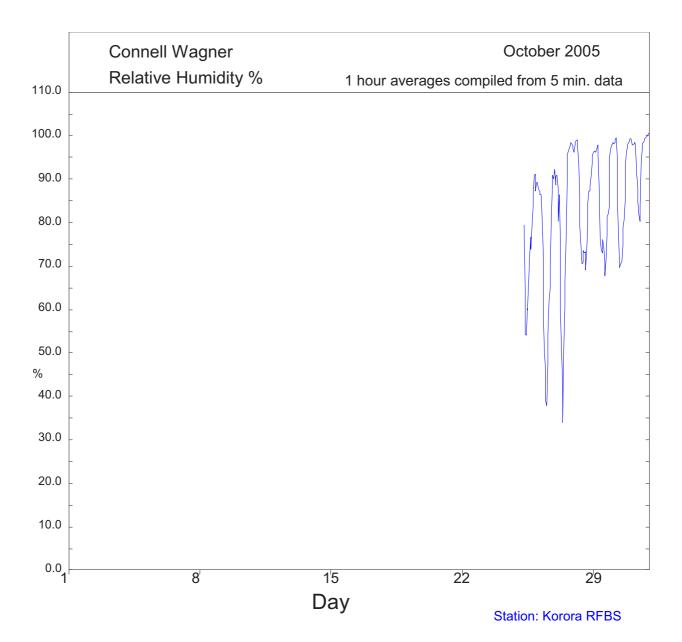


5.2 November 2005 temperature graph

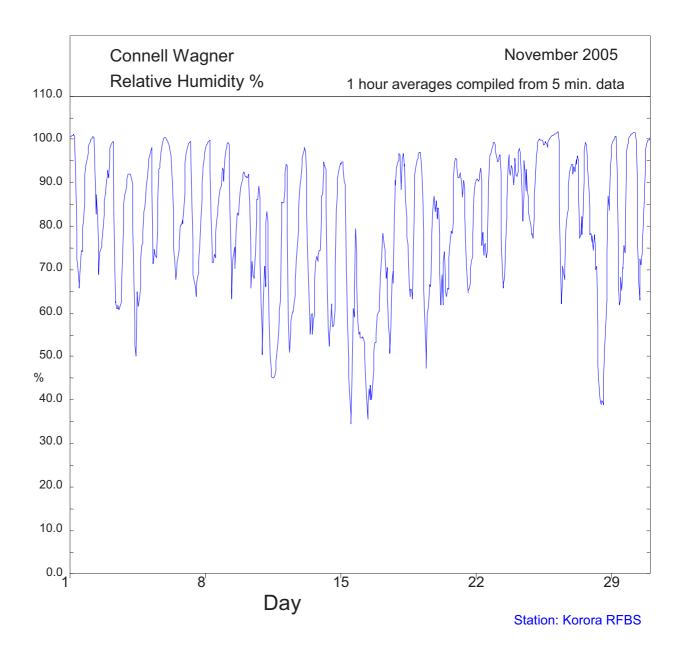


Station: Korora RFBS

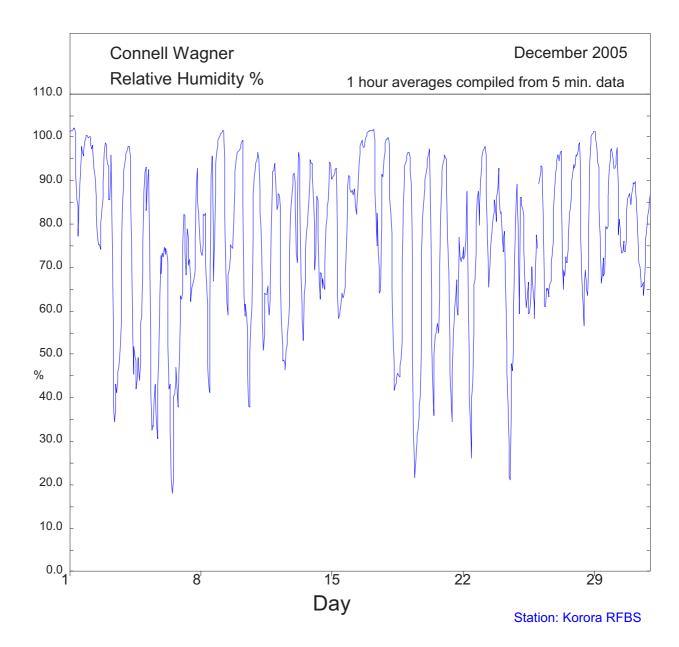
5.3 December 2005 temperature graph

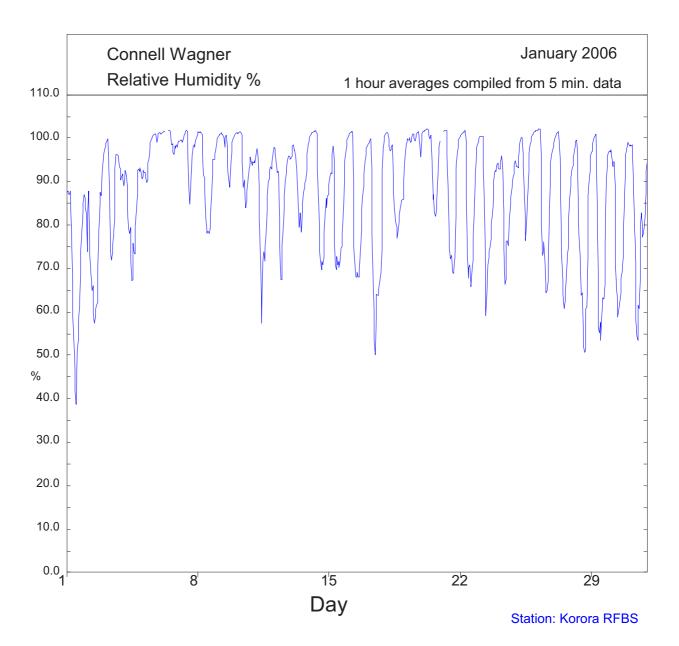


5.4 January 2006 temperature graph

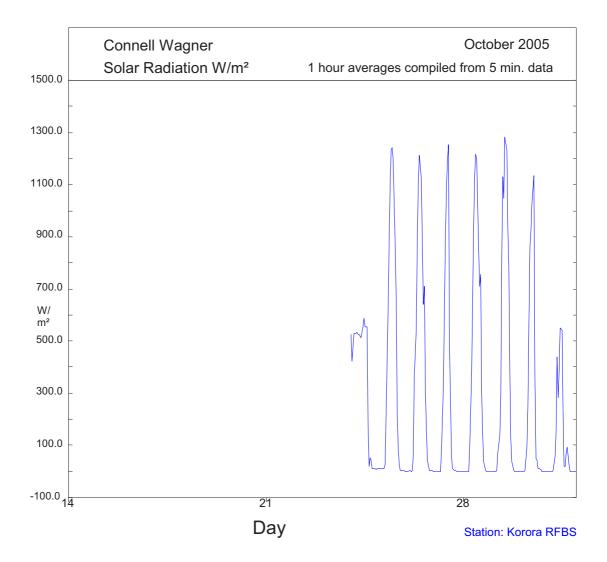


6. Relative Humidity Graphs

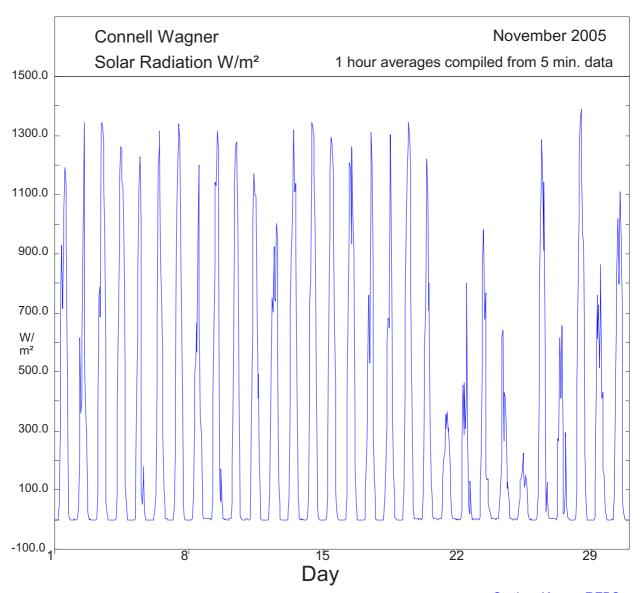

6.1 October 2005 relative humidity graph


6.2 November 2005 relative humidity

6.3 December 2005 relative humidity

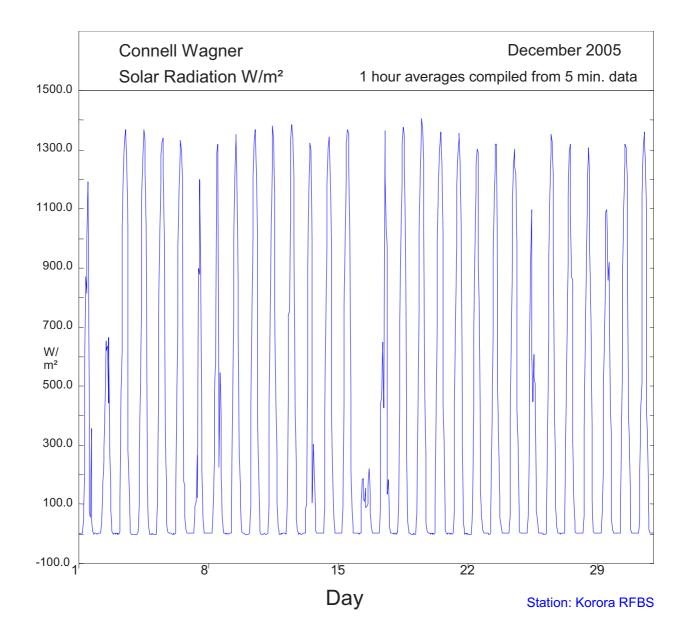


6.4 January 2006 relative humidity

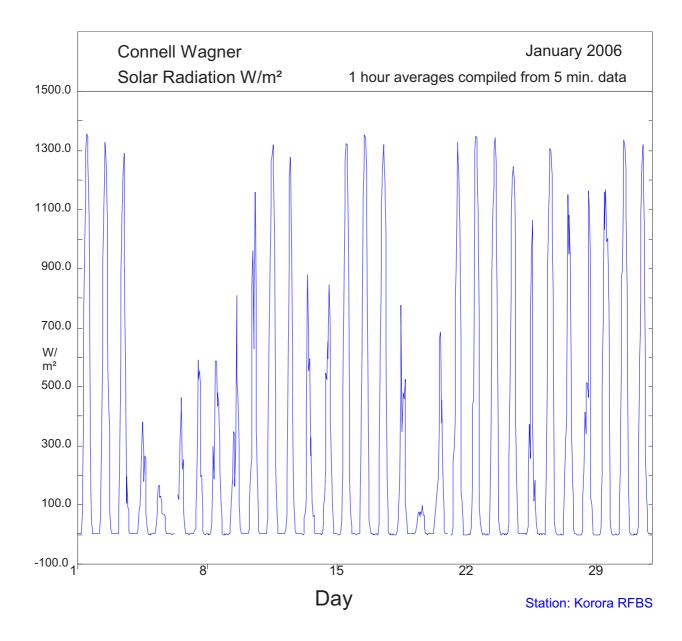


7. Solar Radiation Graphs

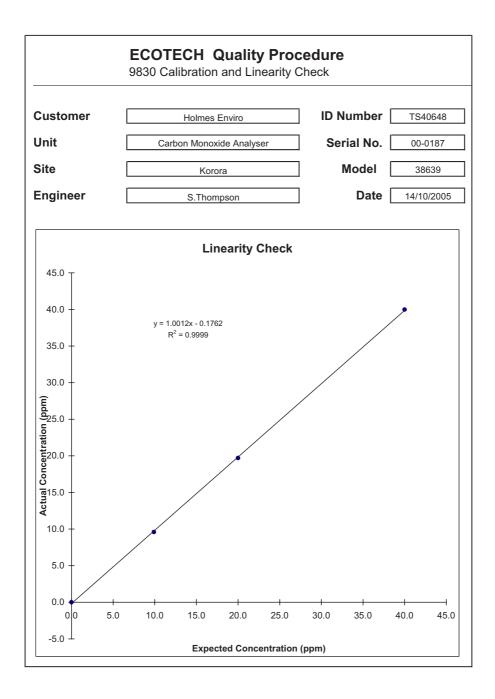
7.1 October 2005 solar radiation graph

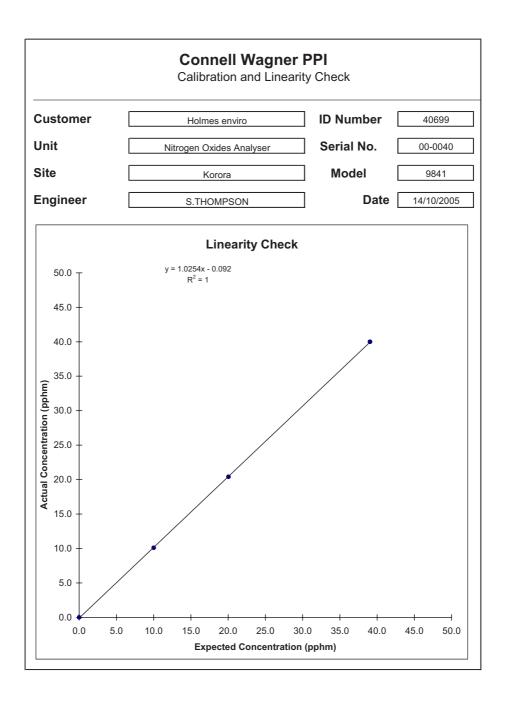


7.2 November 2005 solar radiation graph



Station: Korora RFBS


7.3 December 2005 solar radiation graph



7.4 January 2006 solar radiation graph

8. Calibration Graphs

