Appendix A Director-General's Requirements And Project Description

NSW GOVERNMENT
Department of Planning

Contact:Dinuka McKenziePhone:(02) 9228 6348Fax:(02) 9228 6355Email:Dinuka.McKenzie@planning.nsw.gov.au

Our ref: 9037893

Mr Bob Higgins General Manager, Pacific Highway NSW Roads and Traffic Authority PO Box 576 GRAFTON NSW 2460

Dear Mr Higgins

Director General's Requirements for the Environmental Assessment of Proposed Pacific Highway Upgrade between Tintenbar and Ewingsdale

The Department has received your application for the proposed Pacific Highway Upgrade between Tintenbar and Ewingsdale Project (Application Number: 07_0051).

I have attached a copy of the Director-General's requirements (DGRs) for the environmental assessment of the Project. These requirements have been prepared following the Planning Focus Meeting held on Monday, 16 April 2007 and in consultation with the relevant government agencies.

It should be noted that the Director-General's requirements have been prepared based on the information provided to date. Under section 75F(3) of the Act, the Director-General may alter or supplement these requirements if necessary and in light of any additional information that may be provided prior to the proponent seeking approval for the Project.

I would appreciate it if you could contact the Department at least two weeks before you propose to submit the Environmental Assessment for the Project to determine:

- the fees applicable to the application;
- relevant land owner notification requirements;
- consultation and public exhibition arrangements that will apply;
- options available in publishing the Environmental Assessment via the Internet; and
- number and format (hard-copy or CD-ROM) of the Environmental Assessment that will be required.

Prior to exhibiting the Environmental Assessment, the Department will review the document to determine if it adequately addresses the DGRs. The Department may consult with other relevant government agencies in making this decision. If the Director-General considers that the Environmental Assessment does not adequately address the DGRs, the Director-General may require the proponent to revise the Environmental Assessment to address the matters notified to the proponent. Following this review period the Environmental Assessment will be made publicly available for a minimum period of 30 days.

If your proposal includes any actions that could have a significant impact on matters of National Environmental Significance, it will require an additional approval under the Commonwealth *Environment Protection Biodiversity Conservation Act 1999* (EPBC Act). This approval would be in addition to any approvals required under NSW legislation and it is your responsibility to contact the Department of Environment and Water Resources to determine if an approval under the EPBC Act is required for your proposal (6274 1111 or http://www.environment.gov.au).

Please note that the Commonwealth Government has accredited the NSW environmental assessment process for assessing impacts on matters of National Environmental Significance. As a result, if it is determined that an approval is required under the EPBC Act, please contact the Department immediately as supplementary Director-General's requirements will need to be issued.

If you have any enquiries about these requirements, please contact Dinuka McKenzie, A/Senior Environmental Planning Officer, Major Infrastructure Assessments on 02 9228 6348 or via email (dinuka.mckenzie@planning.nsw.gov.au).

Yours sincerely

Chris Wilson Executive Director As delegate for the Director-General

Director-General's Requirements

Application number	07_0051				
Project	Pacific Highway Upgrade – Tintenbar to Ewingsdale				
Location	Between the Ross Lane and the Ewingsdale Road interchanges of the Pacific Highway within the Byron Shire and Ballina Shire Local Government Areas.				
Proponent	NSW Roads and Traffic Authority				
Date issued	22 May 2007				
Expiry date	22 May 2009				
General requirements	The Environmental Assessment (EA) must include the following:				
requirements	 an executive summary. a detailed description of the Project including: route alignment and corridor width; design elements (e.g. requirements for LOS, pedestrian and cyclists, rest areas and service centres etc); differentiate the limits of the Project with respect to the existing Pacific Highway including operational/ maintenance responsibilities; potential staging; ancillary facilities (e.g. compound site, batching plants etc); and resourceing (e.g. construction material needs, spoil disposal, natural resource consumption including water). an assessment of the key issues, with the following aspects addressed for each key issue (where relevant):				
	 a draft Statement of Commitments (SoC). The SoC must incorporate or otherwise capture all measures to avoid, minimise, manage, mitigate, offset and/or monitor impacts identified in the impact assessment sections of the EA and ensure that the wording of the SoC clearly articulates the desired environmental outcome of the commitment. The SoC must be achievable, measurable (with respect to compliance), and time specific, where relevant. certification by the author of the Environment Assessment that the information contained in the Assessment is neither false nor misleading. 				
Key issues	 Strategic Justification and Project – outline the strategic outcomes for the Pacific Highway Upgrade Program (PHUP), including with respect to strategic need and justification, the aims and objectives of relevant State planning policies, the principles of Ecologically Sustainable Development, and cumulative and synergistic impacts associated with the Program as a whole. Identify how the project fits within these strategic outcomes and how impacts associated with the project will be considered and managed to achieve acceptable environmental planning outcomes across the PHUP. Project Justification – describe the need for and objectives of the project; alternatives considered (including an assessment of the environmental costs and benefits of the project relative to alternatives), and provide justification for the preferred project taking into consideration the objects of the <i>Environmental</i> 				

Section 75F of the Environmental Planning and Assessment Act 1979

Planning and Assessment Act 1979.

- Land Use and Property including but not limited to:
 - impacts to directly-affected properties and landuses adjacent to the project, including: impacts to landuse viability and future development potential, including property title impacts; land sterilisation and severance impacts; and impacts to the connectivity and contiguity of small settlements including Newrybar and Knockrow;
 - consideration of project impacts on the attainment of the objectives of Far North Coast Strategy; and
 - development of a mitigation strategy aimed at promoting appropriate final land uses on lands subject to partial or full acquisition as a result of the project, in consultation with Ballina and Byron Shire Councils.
- Social and Economic including but not limited to:
 - local community socio-economic impacts associated with landuse, property and amenity related changes;
 - business (including agricultural producers) impacts on a case by case basis including impacts to the overall viability, profitability, productivity and sustainability of businesses;
 - regional economic impacts to the agricultural sector taking into account the total loss of regional and State Significant farmland as identified in the Northern Rivers Farmland Protection Project (Department of Planning, February 2005); and
 - regional economic impacts to the tourism sector taking into account agritourism impacts and impacts to local amenity, character and scenery.
- Surface and Ground Water including but not limited to:
 - water quality impacts to the catchments of Emigrant Creek and Wilson River, in consultation with Rous Water, taking into account impacts from both accidents and runoff (i.e. acute and chronic impacts) and considering relevant public health and environmental water quality criteria specified in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000;
 - groundwater impacts, considering local impacts at each deep cutting and cumulative impacts on regional hydrology. The assessment must consider: extent of drawdown; impacts to groundwater quality; discharge requirements; and implications for groundwater-dependent surface flows (including springs and drinking water catchments), groundwater-dependent ecological communities, and groundwater users including the Alstonville Basalt Groundwater Source Water Sharing Plan;
 - flooding impacts, identifying changes to existing flood regimes, in accordance with the *Floodplain Development Manual* (former Department of Natural Resources, 2005) including impacts to existing receivers and infrastructure and the future development potential of affected land; and
 - impacts to waterways to be modified as a result of the project, including ecological, hydrological and geomorphic impacts (as relevant) and measures to rehabilitate the waterways to pre-construction conditions or better.
- Flora and Fauna including but not limited to:
 - consideration of threatened terrestrial and aquatic species, populations, ecological communities and/or critical habitat; and
 - assessment of the following issues: native vegetation loss; weed infestation; habitat fragmentation; impacts to wildlife corridors including riparian corridors; impacts to groundwater-dependent communities, riparian and aquatic habitat; and
 - consideration of regional scale cumulative impacts and identify the significance of the impacts of the project in the context of the PHUP.
- Noise and Vibration including but not limited to:
 - an assessment of operational road traffic noise impacts including consideration of local meteorological conditions (as relevant) and any additional reflective noise impacts from proposed noise mitigation barriers;
 - an assessment of construction noise and vibration including construction traffic noise and blasting impacts; and
 - the assessment(s) must take into account the following guidelines as

	relevant: Environmental Criteria for Road Traffic Noise (EPA 1999), Environmental Noise Management Manual (RTA, 2001), Environmental Noise Control Manual (EPA, 1994), Assessing Vibration: A Technical Guideline (DEC, 2006); and Technical Basis for Guidelines to Minimise Annoyance Due to Blasting Overpressure and Ground Vibration (ANZECC, 1990).
	 Visual Amenity and Urban Design - including but not limited to: consideration of project and urban design (including noise barriers, retaining walls and landscaping) consistent with overall design of the PHUP and the existing (and desired) character of affected localities; and consideration of the <i>Noise Wall Design Guideline</i> (RTA, 2006).
	 Traffic - including but not limited to: demonstration of how the project design meets the traffic and transport objectives of the PHUP; assessment of operational traffic and transport impacts to the local and regional road network, including direct impacts from traffic rerouting and modified access to the upgraded highway, and indirect impacts from the increased accessibility of the Ballina and Byron Shires; and assessment of construction traffic impacts (including spoil haulage).
	 Air Quality - including but not limited to: impacts to sensitive receivers (e.g. Newrybar School); consideration of local meteorological conditions; impacts to road users and other receivers at the tunnel section; and consideration of airborne pollutant impacts on drinking water catchments.
	 Indigenous Heritage – including but not limited to: the consideration of both artefact and landscape scale mitigation measures, where relevant; and consideration of regional scale cumulative impacts and identify the significance of the impacts of the project in the context of the PHUP.
	 Environmental Risk Analysis – notwithstanding the above key assessment requirements, the EA must include an environmental risk analysis to identify potential environmental impacts associated with the project (construction and operation), proposed mitigation measures and potentially significant residual environmental impacts after the application of proposed mitigation measures. Where additional key environmental impacts are identified through this environmental risk analysis, an appropriately detailed impact assessment of this additional key environmental impact must be included in the EA.
Consultation	 You should undertake an appropriate and justified level of consultation with relevant parties during the preparation of the EA, including: local, State or Commonwealth government authorities and service providers such as Rous Water, the Department of Environment and Climate Change, the Department of Primary Industries, the Department of Water and Energy, the Department of State and Regional Development, Byron Shire Council and Ballina Shire Council; Specialist Interest Groups including Local Aboriginal Councils; and the public, including affected landowners.
	consultation undertaken to date and identify the issues raised (including where these have been addressed in the EA).

Project description

The length of the proposed upgrade would be approximately 17 km starting at Ross Lane in Tintenbar and extending to the north to the existing Ewingsdale interchange, near the settlement of Ewingsdale. At Ross Lane, the proposed upgrade would connect to the north end of the Ballina bypass. Generally the proposed upgrade would be in close proximity to existing highway corridor from Ross Lane to the Bangalow bypass. The existing highway would be maintained for local and regional traffic.

From Bangalow, the proposed upgrade would diverge away from the Bangalow bypass to the northeast through Tinderbox valley. From there, the proposed upgrade would avoid the steep grades of St Helena Hill by way of a tunnel approximately 340 m long and 45 m below the ridge line. North of the tunnel, the proposed upgrade alignment is located immediately to the east of the existing highway before tying into the Ewingsdale interchange.

The general features of the proposed upgrade would be:

- Four-lane divided carriageways (two lanes in each direction), with a wide median allowing for the future addition of a third lane in each direction.
- Class M standard over the full length of the proposed upgrade. In accordance with the RTA's Pacific Highway Design Guidelines, 'Class M' projects are designed to 110 km/h freeway standard. This means a controlled access road with divided carriageways, no access for traffic between interchanges, grade separation at all intersections and alternative routes available for local traffic through the provision of service roads or local arterial road networks.
- Conversion of the Ross Lane interchange into a full interchange by construction of north-facing ramps providing access between the local road network and the proposed upgraded highway to the north. A partial interchange at Ross Lane will be constructed as part of the Ballina bypass project.
- Modifications to the existing Ewingsdale interchange to provide full access between the modified local and regional road network and the highway.
- A half interchange at Ivy Lane. North-facing ramps would provide access between the local road network and the proposed upgraded highway to the north.
- A half interchange at Bangalow. South-facing ramps would provide access between the local road network, including to Bangalow and Lismore, and the proposed upgrade to the south. This arrangement would replicate the arrangement with the existing Bangalow bypass which also has south-facing ramps only.
- Six twin bridges and four underpasses allowing roads and creeks to pass underneath the proposed upgrade. These would include twin bridges above Byron Creek and the existing Casino-Murwillumbah railway on the north side of Byron Creek.
- Two bridges carrying local roads over the proposed upgrade, one for Broken Head Road and one about 500 m north of Lawlers Lane providing access to several properties east of the upgrade. Protection screens would be provided on both bridges.

- Emergency u-turn and median crossovers at about 2.5 km intervals. These facilities incorporate lay-bys where vehicles could safely pull off the upgraded highway.
- Sedimentation basins to intercept run-off for treatment before discharging into the natural watercourses.
- Medians and outer verges, including safety barriers where required.
- Signage providing clear directions for traffic at the Ross Lane, Ivy Lane, Bangalow and Ewingsdale interchanges.
- Relatively flat gradients compared to the existing highway, with the maximum grade just south of Bangalow being approximately 5.4% over 1300 metres. There would also be a 4.4% grade over almost 2 km on the north side of the tunnel. An additional southbound climbing lane would be provided in both sections so that slow moving trucks would not be a significant safety hazard to other vehicles.
- The existing highway would be retained as a continuous road for local and regional traffic. It is further anticipated that between Ross Lane and Bangalow the existing highway would be handed over to the councils. Between Bangalow and Ewingsdale the existing highway would continue to function as a regional link between Lismore/Bangalow and the north and would be retained by RTA.
- Two significant diversions of the existing highway are proposed to retain it as a continuous local road. The first is just north of Emigrant Creek where the existing highway would be diverted underneath the bridge taking the proposed upgrade over Emigrant Creek. The other diversion is where the existing highway south of the Ewingsdale interchange is being diverted to a roundabout on the western side of the interchange.
- Additional local roads and property access would be provided including:

safe access to all properties affected by the proposed upgrade, either directly to the existing highway or indirectly via a new local access road.

new local roads as required to link the proposed interchanges with the existing highway and other local access roads.

- The proposed upgrade would incorporate twin parallel tunnels under St Helena ridge. The tunnels would each be about 340 m long and about 45 m below St Helena Road. One tunnel would be provided for each carriageway, separated by a rock pillar. The northbound tunnel would be 11.5 m wide between barriers, providing sufficient width for linemarking as 3 lanes in each direction if required in the future. The southbound tunnel would be 12.5 m wide to incorporate the southbound climbing lane while still allowing 1 m wide shoulders on each side. In view of the additional southbound lane proposed initially, there is no provision for adding an additional lane to the southbound carriageway through the tunnel. The precise dimensions of the tunnel may be modified slightly during detailed design.
- Intersections and interchanges designed to achieve at least a level of service C, 20 years after opening for the 100th highest hourly volume (refer to section 13.?? for a description of level of service).

Appendix B Field Methodology and Results

B1 Appendix B

TABLE OF CONTENTS

SECTION

PAGE

B-1	INTRO	DDUCTION	1
B-2	DRILL	ING	1
	B-2.1	Drilling Methodology	1
	B-2.2	Groundwater Monitoring Well Construction and Development	2
	B-2.3	Geological Transects Assessment	2
	B-2.4	Water Level Measurements	4
B-3	HYDR	AULIC CONDUCTIVITY ESTIMATION – FALLING HEAD TEST	Γ.5
	B-3.1	Field Methodology	5
	B-3.2	Data Analysis	6
	B-3.3	Estimated Hydraulic Conductivities	7
B-4	SOIL	PERMEABILITY ESTIMATION – TALSMA INFILTROMETER	
	TEST	9	
	B-4.1	Field Test Method	9
	B-4.2	Results Analysis Method	9
	B-4.3	Soil Permeability Testing Results	10
B-5	SPRI	NG VERIFICATION	. 10
B-6	GROL	JNDWATER QUALITY ASSESSMENT	. 12
	B-6.1	Groundwater Sampling Method	12
	B-6.2	Water Quality Results	12

APPENDIX A – TABLES & FIGURES

Table B-1: List of Groundwater Monitoring Wells	3
Table B-2: Groundwater Level Measurements:	5
Table B-3: Estimated Hydraulic Conductivity - Falling Head Test	7
Table B-4: Estimated Vertical Hydraulic Conductivity – Talsma Infiltrometer Test 1	0
Table B-5: Springs Verification Results 1	11

Figure B-1:	Cumulative	Distribution	of Estimated	Hydraulic	Conductivity	(m/s)	. 8
Figure B-2:	Piper Plot -	Groundwater	and Surface	Water (Au	gust 2007)		13

B-1 INTRODUCTION

This section provides with the methodology and results used by Golder on Site during the hydrogeological investigation.

Field work was carried out from 9 July to 31 July 2007 and on the 20 and 21 August 2007 and 31 August 2007. The 20 and 21 August activities were carried out during heavy rainfall. At that time, the locations at the toe of Cut 19 (BH2017 and BH2018) could not be accessed due to creek flooding, however, water level measurements were obtained on a subsequent site visit, 31 August 2007.

The hydrogeological field data were analysed and brought together to consolidate the conceptual hydrogeological models (CSM) at each of the selected sections. It is noted that these sections were selected to investigate the general case (Cut 6) and a more extreme case (Cut 19), of 26 cuts (and tunnel) proposed associated with the proposed works.

Golder has developed standard technical procedures for field activities. The field methodology for the hydrogeological groundwater investigation is based on Golder technical procedures and Site conditions.

B-2 DRILLING

A pair of boreholes was drilled at five locations along each transect in order to investigate both deep and shallow groundwater flow systems, which may be affected by the proposed excavations at Cut 6 and 19.

The deep boreholes were drilled to around 20 m depth within the basalt bedrock in order to target highly permeable zones where preferential groundwater flow was likely to occur. The shallow boreholes were drilled adjacent to the deeper boreholes in order to assess the presence and nature of groundwater flow within the regolith layer during (particularly after periods of high rainfall).

B-2.1 Drilling Methodology

Boreholes were advanced using both core and non-core drilling techniques. The boreholes were generally commenced using solid flight augers and wash boring techniques in residual soils and extremely weathered basalt (the regolith). NMLC (diamond core drilling – 52 mm) diamond coring techniques were then used to continue the boreholes to their target depth in the basalt to allow detailed observation of the bedrock encountered. The target depth was selected based on the nature of the basalt, including, the weathering (weathered to fresh basalt), fracturing, vesicularity and bedding.

Sampling was carried out in soils and rocks using Standard Penetration Tests (SPTs). SPT samples were examined in order to assess material type, plasticity and moisture and were kept to allow for further laboratory testing. A record of blow-counts taken to advance the SPT was recorded in order to assess the consistency of the material encountered.

Core recovered from the boreholes was logged by an experienced geotechnical engineer and was kept to allow for further examination and testing, as required. Point load tests were carried out on rock from within the proposed cuts in order to assess geotechnical parameters for the design of cut batters and excavation schedules. The logs recorded on site and core photography are presented in Appendix C.

B-2.2 Groundwater Monitoring Well Construction and Development

The groundwater wells were constructed and developed according to Golder Technical Procedure TP19: *Procedure for Installation of groundwater monitoring wells and standpipes*.

Standpipe piezometers were installed in all boreholes drilled as part of the hydrogeological investigation of Cuts 6 and 19. The wells were generally constructed with a 3 m screened interval in permeable weathered or highly fractured basalt which showed evidence of ongoing groundwater flow.

Gravel packs consisting of 2 mm graded sand were installed between the PVC standpipe and the bedrock and a bentonite plug was constructed above the screen to prevent the connection of the aquifers through the borehole. Boreholes were back filled above the bentonite plug using a cement-bentonite grout mix and were capped with steel Gattic covers finished flush with the existing ground surface.

Following construction, the monitoring wells were developed using the three bore volumes method. A minimum of three times the volume of water in the well in equilibrium state was removed from the well using a Waterra foot valve and PVC tubing, alternatively, the well was developed until the water became clear. The groundwater monitoring wells were surveyed at completion of the wells.

B-2.3 Geological Transects Assessment

Nine groundwater wells were completed along Cut 6 transect using an existing deep groundwater well (BH1021) to complete the pair of groundwater wells at the top of the hill on Cut 6. Ten groundwater wells were completed along Cut 19 transect.

Borehole names and depths for each of the cuts investigated are shown in Table B-1 (next page).

Borehole name	Deep/Shallow	Hole Depth (mBGS) ¹	Easting (mMGA) ²	Northing (mMGA)	Surveyed Elevation (m AHD) ³	
		Cut 6 Borel	hole Details			
BH1021	Deep	32.00	552130	6820900	120.20	
BH2000	Shallow	11.00	552131	6820902	120.18	
BH2001	Deep	20.10	552152	6820945	117.82	
BH2002	Shallow	10.50	552153	6820942	118.03	
BH2003	Deep	19.80	552178	6821040	94.94	
BH2004	Shallow	12.00	552177	6821041	96.86	
BH2005	Deep	15.40	552217	6821077	88.99	
BH2006	Shallow	3.50	552217	6821077	88.93	
BH2007	Deep	11.60	552261	6821192	88.62	
BH2008	Shallow	5.00	552262	6821191	88.58	
Cut 19 Borehole Details						
BH2009	Deep	30.30	552967	6828454	94.30	
BH2010	Shallow	12.10	552967	6828452	94.01	
BH2011	Deep	20.30	553041	6828442	84.58	
BH2012	Shallow	11.00	553040	6828444	84.69	
BH2013	Deep	18.00	553097	6828454	75.93	
BH2014	Shallow	14.30	553097	6828457	76.03	
BH2015	Deep	16.60	553128	6828431	69.35	
BH2016	Shallow	8.10	553127	6828432	69.38	
BH2017	Deep	21.00	553229	6828420	54.77	
BH2018	Shallow	8.00	553231	6828417	54.75	

Table B-1: List of Groundwate	^r Monitoring Wells
-------------------------------	-------------------------------

¹ mBGS is metres Below Ground Surface; ² mMGA is metres Map Grid of Australia 1994, Zone 56; ³ mAHD is metres Australian Height Datum.

The information collected during this task was analysed and used to develop hydrogeological cross sections (transects) for each road cutting. These transects were drawn using the geological information from the borehole logs (core information), the groundwater monitoring well completion details and the water level measurements. The boundary between the bedrock aquifer system and the weathered upper aquifer system was assessed from the borehole logs and plotted on the transect cross sections. The boundary was estimated to

correspond with the beginning of the moderately weathered rock, slightly weathered rock and fresh rock. At each drilling location the groundwater monitoring wells were drawn and their respective water level indicated.

The interpreted hydrogeological transect for Cuts 6 and 19 are presented in Figures 4 and 5, respectively. It is noted that the water table level was interpreted, where appropriate.

B-2.4 Water Level Measurements

Water level measurement data from the boreholes is presented in Table B-2.

At each location groundwater level in the deep groundwater monitoring well was generally deeper than the groundwater level in the shallow monitoring wells, indicating the presence of two independent water systems (with a downward vertical hydraulic head and flow differential).

At the crest of the hills in both Cut 6 and Cut 19 the monitoring wells, screen in the weathering profile (inferred perched aquifer layer) were found dry (for water level measurements on two separate occasions) suggesting that the shallow groundwater system operates intermittently or is not present at all at these elevated locations.

At Cut 6, the water levels at each of the two locations at the base of the hillslope are similar within the shallow and deep groundwater monitoring wells, however, each groundwater monitoring well is observed to behave differently during development recovery and hydraulic testing.

The observations of the water levels suggest that:

- The groundwater systems in the valley of Cut 6 are in full hydraulic connectivity;
- There is no water in the shallow aquifer system at the top of the hills; and,
- At mid-slope, the deep and shallow aquifer systems are independent.

Note that BH2017 and BH2018 at Cut 19 were not accessible during the second survey due to floods preventing the crossing of the creek.

B5 Appendix B

Bore Name	Completion depth	Screened from	Screened to (mBGS)	Water Level 27-30 July 2007 (mBGS)	Water Level 21- 22 August 2007	Water Level 31 August 2007
	(mBGS) ¹	(mBGS)			(mBGS)	(mBTOC) ²
BH1021	32.0	26.0	32.0	18.35	16.89	16.88
BH2000	11.0	8.0	11.0	dry	dry	dry
BH2001	20.1	17.1	20.1	19.80	19.06	19.61
BH2002	10.5	7.5	10.5	dry	dry	dry
BH2003	19.8	13.8	19.8	9.30	8.00 / 16.10 *	9.84
BH2004	12.0	9.0	12.0	9.75	8.00 / 9.40 *	9.22
BH2005	15.4	12.4	15.4	3.10	2.33	2.65
BH2006	3.5	1.6	3.5	3.10	1.99	2.60
BH2007	11.1	8.1	11.1	2.40	2.53	2.05
BH2008	5.0	2.0	5.0	2.40	1.32	1.99
BH2009	30.3	27.3	30.3	17.90	16.96	19.16
BH2010	12.1	9.1	12.1	dry	10.78	dry
BH2011	20.3	17.3	20.3	10.20	9.8	10.23
BH2012	11.0	8.0	11.0	dry	not accessible	10.12
BH2013	18.0	15.0	18.0	14.70	12.83	12.97
BH2014	14.3	11.0	14.3	12.10	12.07	12.15
BH2015	16.1	13.1	16.1	14.70	14.66	14.32
BH2016	7.9	4.9	7.9	dry	dry	dry
BH2017	21.0	18.0	21.0	4.50	not accessible	4.19
BH2018	8.0	5.0	8.0	4.40	not accessible	4.13

 Table B-2: Groundwater Level Measurements:

*: first value is WL estimated before purging (equipment failure), second value taken the next day before sampling, the well had possibly not fully recovered; ¹ mBGS is metres Below Ground Surface; ² mBTOC is metres Below Top of Casing.

B-3 HYDRAULIC CONDUCTIVITY ESTIMATION – FALLING HEAD TEST

B-3.1 Field Methodology

Hydraulic conductivity of the rock mass and the regolith was assessed using falling head test methods - carried out in each of the boreholes. The falling head tests were done after the bores were developed.

InSitu Level Troll 700 pressure transducers (water level dataloggers) were used to record the pressure head differential during the test (measuring the relaxation to the artificial pressure head created though the introduction of a slug of water at the beginning of the test).

The standing water level of the borehole was measured manually immediately prior to the test. The datalogger was lowered into the well and was initialised using a field laptop computer. Twenty litres (20 L) of potable water was injected into the well to create a pressure differential from the equilibrium state (i.e. the natural standing water level, or SWL). The boreholes were then left for between 3 and 12 hrs to allow water levels to recover to equilibrium conditions.

B-3.2 Data Analysis

Water level data downloaded from the automatic datalogger loggers was recovered as displacement data (expressed in metres), with corresponding time intervals (expressed in seconds). The time scale was reset to zero to correspond to the start of the falling head test (no more water added to borehole). Normalised displacement versus time since test initiated was then plotted using logarithmic axis scales.

The falling head tests were analysed using AQTESOLV v3.5, software which is designed to calculate hydraulic conductivity, storativity and other aquifer properties from data sets collected during slug and aquifer (pumping) tests. The normalized plots were matched using Bouwer-Rice (1976) method in most cases. The best-fit lines were manually adjusted to fit that portion of the falling head curve which was considered to optimally represent the hydraulic characteristics of the aquifer. The hydraulic conductivity was then obtained from the slope of the best-fit straight line. Analysis reports for each test are reported in Appendix E.

The following assumptions were used in the analysis of the falling head tests:

- If the static water level (SWL) measured in the well prior to the start of the test was above the top of the gravel pack of the well, the aquifer was assumed to be confined. If the SWL was measured below the top of the gravel pack, the aquifer was assumed to be unconfined;
- 2. As the true thickness of the aquifer is unknown, the saturated thickness of the aquifer during analysis was assumed to be equal to the saturated thickness of the gravel pack;
- 3. An effective porosity of the gravel pack of 0.3 was assumed;
- 4. As many of the monitoring wells did not recover after inserting the slug to a water level measured prior to testing, the initial displacements were in most cases, calculated based on the water column at the end of the test; and

5. Conductivities were estimated assuming an anisotropic ratio of $k_v/k_h = 1$. Sensitivity analysis indicated that a ratio of 0.1 or 0.01 did not affect the resulting hydraulic conductivity estimates significantly (by more than one order of magnitude).

B-3.3 Estimated Hydraulic Conductivities

The following table (Table B-3) provides the estimated hydraulic conductivities from the falling head tests. It should be noted that the values produced by the analysis of the tests represents an estimate that may vary by as much as a full order of magnitude from the true value.

Hydraulic	Conductivity (1	m/s) - Cut 6	Hydraulic (Conductivity (n	n/s) - Cut 19
BH1021	Deep	4.5E-08	BH2009	Deep	1.1E-7
BH2000	Shallow	Dry	BH2010	Shallow	Dry
BH2001	Deep	3.2E-06	BH2011	Deep	1.8E-09
BH2002	Shallow	Dry	BH2012	Shallow	Dry
BH2003	Deep	NA ¹	BH2013	Deep	1.2E-07
BH2004	Shallow	3.1E-07	BH2014	Shallow	2.5E-07
BH2005	Deep	NA	BH2015	Deep	9.9E-07
BH2006	Shallow	1.3E-07	BH2016	Shallow	Dry
BH2007	Deep	7.9E-07	BH2017	Deep	NA
BH2008	Shallow	3.6E-05	BH2018	Shallow	6.1E-07

Table B-3: Estimated Hydraulic Conductivity - Falling Head Test

 1 NA - see text for explanation.

The results of hydraulic conductivity assessment were not available for three of the boreholes. Those boreholes are noted in Table b-3. with "NA". The tests were conducted at those bore holes but the responses to the imposed hydraulic head were very low and not considered representative of the aquifer system (but rather the intervening aquitard/ aquiclude layers frequently encountered in the lava sequences).

The hydraulic conductivity for the deep aquifer, measured in metres per second, range from 1.8×10^{-9} m/s to 3.21×10^{-6} m/s. Most of the hydraulic conductivity values are of the 10-7 m/sec order of magnitude. In the shallow aquifer, marginally higher conductivities were calculated, but most within a 10-7 m/s order of magnitude or higher, the maximum being observed in the valley at Cut 6, with 3.6×10^{-5} m/s at BH2008.

Figure B-1 presents the cumulative distribution of estimated hydraulic conductivity with respect to both the deep aquifer and shallow aquifer. The data presented in Figure B-1 was used in the predictive numerical seepage analysis (Seep/W modelling) presented in Appendix G.

Figure B-1: Cumulative Distribution of Estimated Hydraulic Conductivity (m/s)

B-4 SOIL PERMEABILITY ESTIMATION – TALSMA INFILTROMETER TEST

B-4.1 Field Test Method

Soil permeability was assessed in order to provide input to the estimate of rainfall recharge rate used in seepage analysis modelling. This testing used the ring infiltrometer test methods (Talsma test).

A steel ring of 500 mm diameter is hammered into the ground surface at three locations along each of the transects. For each location, a flat soil section was selected. The ring is hammered a few centimetres in the soil while avoiding rocking it. A rag is placed at the bottom of the ring to allow homogeneous water distribution. A 1:10 water level reading scale is placed across the ring (the scale is fitted with a bubble levels to ensure the right position angle. The ring is filled with water and the drop in water level was monitored continually for the duration of the test. When a quick infiltration rate is observed, the water level in the ring is topped up and further data are monitored.

The initial responses observed in a ring test correspond to soil sorptivity, when the infiltration observations have reached steady state, the permeability can be estimated. Long term flow rates are determined from the steady rate of flow seen as the ground became saturated. The July 2007 test did not all reach steady state by the time the ring was empty. The tests were repeated in August 2007, where the ring was refilled with water until the infiltration had reached a steady state. To increase reliability, the test was repeated 2 to 3 times at each location.

B-4.2 Results Analysis Method

To calculate soil permeability (saturated vertical hydraulic conductivity), accumulated infiltration was plotted against time in seconds. The mathematical solution of the plot corresponds to a square root function curve in the initial displacement, then a straight line, as follows:

 $I = S\sqrt{t} + Kt$ with I being cumulative infiltration, m; t, being time, s; S, constant, corresponding to the sorption in the soil; K, being the hydraulic conductivity, m/s.

When the soil is dry, the sorption factor will be observed and the first data points will not be used for the calculation of the saturated vertical hydraulic conductivity of the soil. When the soil is moist to wet, the sorption factor may not be observed. The soil permeability is deduced from the straight portion of the plot. Graphic representations and field data are provided at the end of this appendix.

B-4.3 Soil Permeability Testing Results

The following table presents the soil permeability results:

Hydraulic C	onductivity (n	n/s) - Cut 6	Hydraulic Conductivity (m/s) - Cut 19		
Location in transect	Range of result	Average	Location in transect	Range of result	Average
Тор	5.0E-06 1.7E-05	1.1E-05	Тор	1.0E-04 ¹	1.0E-04
Middle	1.0E-04	1.0E-04	Middle	3.8E-06 5.3E-05 3.1E-05	3.7E-05
				5.9E-05 ¹	
Bottom	4.1E-05 1.3E-04 1.3E-04	1.0E-04	Bottom	5.2E-05 ¹	5.2E-05

Table B-4: Estimated Vertical Hydraulic Conductivity – Talsma Infiltrometer Test

¹ Calculated from July 2007 field data, remainder from August 2007 data.

The tests done at mid-section of Cut 6 were located in the road corridor, and do not represent the natural conditions, as imported road construction materials underlies most of the area leading to an increased estimate of soil permeability.

The relative infiltration rate can be compared between locations. The infiltration rate at the bottom of Cut 6 (flat valley area) is 10 times higher than the infiltration rate in the upper grazed pasture area of Cut 6. At Cut 19, the infiltration rate on the top of the hill is higher than lower down the slope.

B-5 SPRING VERIFICATION

In addition to the groundwater springs identified previously by the *Bureau of Rural Sciences* (BRS, Brodie and Green, 2002), potential spring locations were assessed through the analysis of aerial photography and landscape features. A walkover at potential spring locations at Cut 6 and Cut 19 during the field works (refer Figures 2 and 3).

These potential spring locations were visited and the site features examined in order to verify the actual presence of a spring at each location. Notes were made on the geology of the locations including soil makeup and rock outcrops which were present. Observations of vegetation and any obvious seepage or moist ground was recorded and an assessment of the presence or otherwise of a spring at the site was made. Discussions with landowners were held, where possible.

Some of the potential spring locations could not be checked due to lack of access permission on private properties.

No further springs or seepage points other than those identified by the BRS were encountered, as described in the table below. However, a site walkover during heavy rainfall identified local points of subsurface water flow discharge. These points were not discharging the day following the heavy rainfall events, and, as such, are not considered springs.

We noted that rainfall events typically result in water ponding in flat-lying areas or depressions on the hill slopes. These areas are inferred to be from farming activities, such as erosion control structures, access paths or cattle tracks. They influence surface drainage by controlling the surface water runoff, however, are not considered springs.

Ver	ification of Springs at Cut 6	Ve	rification of Springs at Cut 19
C6-1 (high priority)	No spring present at this location. The lusher vegetation is due to the very close proximity of the creek (alluvial flood plane), note the creek is misplaced on the map.	C19-1 (not of interest)	Not checked (outside likely area of influence)
SP13	Spring exists at this location and is flowing.	C19-2 (not of interest)	No spring present at this location
C6-2 (high priority)	Access to property not permitted	C19-3 (high priority)	No spring present at this location. Subsurface water flow discharge observed during heavy rain.
C6-3 (low priority)	No spring present at this location. Drainage feature.		
C6-4 (high priority)	Access to property not permitted. Assessment from nearby property. No springs present in the vicinity of location C6-4. The cluster of		

Table B-5: Springs Verification Results

Verification of Springs at Cut 6	Verification of Springs at Cut 19
vegetation seems to be due to a water hole feature. No water flowing after heavy rains.	

B-6 GROUNDWATER QUALITY ASSESSMENT

B-6.1 Groundwater Sampling Method

Water samples were collected from the creeks, springs and selected groundwater monitoring wells (ie. wells BH2003 to BH2007, and BH1021, Cut 19 creek and Spring SP-13). The groundwater monitoring wells were purged using the three bore volume method (Golder Technical Procedure TP20, *Groundwater sampling*) prior to sampling to make sure that the groundwater sampled best represented the groundwater within the aquifer.

Samples were collected in dedicated laboratory bottles which were identified with the sample location and date of sample collection. The samples were sent for analysis to EnviroLab Pty Ltd (EnviroLab), a NATA accredited laboratory in Sydney NSW. Quality Assurance – Quality Control (QA-QC) duplicates were taken based on a frequency of 10% (1 duplicate every 10 samples) and submitted with the other samples to the laboratory.

Field parameters (including pH, electrical conductivity and temperature) are unavailable for the samples and bore development due to weather conditions (high winds and heavy rainfall).

B-6.2 Water Quality Results

The laboratory analysis for the water samples collected from the groundwater monitoring wells and the creeks and springs are summarised in Table 1 at the end of this report. The laboratory certificates are presented in Appendix F.

The chemistry results are plotted below in a Piper diagram (Figure B-2). Piper diagrams allow classification of water according to their relative composition in major ions: chloride, sulphate, hydrocarbonates (i.e. bicarbonate), potassium, calcium, magnesium and sodium. On a Piper diagram, a water sample will plot in a specific location according to its composition. This location is also called a water type. Water samples from different origins often have different water types.

Figure B-2: Piper Plot - Groundwater and Surface Water (August 2007)

The Piper plots reveal the following:

- Groundwater samples from the deep aquifer plot separately from groundwater samples from the shallow aquifer and the creeks and springs suggesting they are of a different water type and origin, are 'older' (longer residence time in the aquifer);
- The shallow aquifer groundwaters and surface water creek samples are Na-Cl-SO₄ type and are similar in general water type, and being 'young' and more typical of rainfall recharge waters. This is general typical of shallow groundwater which are readily recharged and drain rapidly to the surface drainage system (creeks and springs); and
- Deeper aquifer groundwater samples are Na-Cl-HCO₃-SO₄ type waters, again reflecting rainfall recharge (normally Na-Cl dominant), however, influenced by longer residence time within the aquifer (mineral leaching is more pronounced). These waters characteristic suggest the deeper groundwaters are distinct from the more dynamic shallow water flows. They are also dissimilar to the creek and spring water quality, suggesting they do not contribute significantly to the local creek and spring flows.

On this basis it can be inferred that the baseflow to the creeks is provided largely by the shallow aquifer, local and intermediate groundwater flow systems, and that the deeper aquifer is not a significant contributor to creek baseflow. This implies that any cutting that significantly diverts potential rainfall recharge waters away from the local shallow groundwater systems (even though they are largely intermittent) is likely to locally diminish water discharges to the creeks and springs. This is hypothesis is tested by the predictive numerical modelling described in Appendix G.

Attachment Permeability Test Data and Graphs

				Report	t of Repor	t Permeame	ter				
Client :	RTA			-			Job No. :	06622140		G	older
Project :	Pacific High	way Upgrade -	Tintenbar t	to Ewingsdale			Date :	31-Jul-07		WASS	ociates
Loca	tion	Locat	ion	Locat	ion	Locat	ion	Locat	ion	Locat	ion
Cut 6 Top	p Section	Cut 6 Mid	Section	Cut 6 Botton	m Section	Cut 19 Top	Section	Cut 19 Mic	1 Section	Cut 19 Botto	m Section
Depth (mm)	Time (sec)	Depth (mm)	Time	Depth (mm)	Time	Depth (mm)	Time	Depth (mm)	Time	Depth (mm)	Time
0	0	0	0	0	0	0	0	0	0	0	0
1		1		1		1		1		1	l
2	5	2	4	2		2	10	2	19	2	11
3	11	3	6	3		3	20	3	29	3	22
4	11	4	6	4		4	20	4	58	4	22
5	17	5	10	5	4	5	28	5	61	5	28
7	1/	7	10	7	4	7	20	7	01	7	20
8	22	8	13	8	7	8		8	85	8	56
9	22	9	15	9	,	9		9	05	9	50
10	28	10		10		10	46	10	110	10	75
11	20	11		11		11	70	11	110	11	15
12	34	12		12	12	12	70	12	135	12	99
13		13		13		13		13		13	
14	39	14		14	14	14	84	14	161	14	123
15		15		15		15		15		15	
16	44	16	26	16		16	103	16	188	16	153
17		17		17		17		17		17	l
18	49	18		18		18	119	18	214	18	187
19		19		19		19		19		19	l
20	55	20		20	22	20	137	20	242	20	220
21		21		21		21		21		21	l
22	59	22		22		22	155	22	274	22	254
23		23		23		23		23		23	l
24	64	24	37	24		24	174	24	311	24	294
25		25		25	- 0	25		25		25	
26 27	68	26	41	26	30	26	191	26	345	26	3'34
27	72	27	14	27		27	210	27	270	27	280
28 20	15	28 20	44	28 20		28 20	210	28 20	319	28 20	380
29 30	78	29 30	10	29 30	26	29 30	225	29 30	422	29 30	420
50	/0	50	49	50	30	50	223	50	422	50	429
	1										1

Client : F Project : F	Report of Rep RTA Pacific Highway U	oort Permeame	ter ar to Ewingsdale		Job No. : Date :	06622140 31-Jul-07	GASS
		Location	Cut 19 Mid Section	1		-	
TE	ST 1	TF	-ST 2	TE	ST 3	-	
Depth (mm)	Time (sec)	Depth (mm)	Time (sec)	Depth (mm)	Time (sec)		
0	0	0	0	0	0		
1	252	1	14	1	19		
2	511	2	25	2	44		
3	755	3	33	3	67		
4	1066	4	49	4	87		
5	1309	5	62	5	109		
6	1591	6	75	6	138		
7	1861	7	90	7	170		
8	2135	8	100	8	200		
9	2388	9	114	9	229		
10	2672	10	127	11	279		
		11	140	13	353		
		13	169	15	414		
		15	199	17	480		
		17	230	19	542		
		20	286	21	602		
		21	294				
		24	348				
		25	369				
		27	408				
		29	441				
		22	402				
		35	522				
		33	585				
		39	615				
		41	649				
		43	689				
		45	728				
		47	758				
		49	790				
		51	834				
		53	874				
		55	913				
		57	951				
		59	995				
				1	1	1	

	Report of Report Permeameter												
Client :	RTA						Job No. :	06622140			Golder		
Project	Pacific Highw	ay Upgi	rade - Tintenł	oar to Ew	ingsdale		Date :	22-Aug-07			ssociates		
				-									
	Cut 6 Top	Section	1	Cut 6 M	id Section			Cut 6 Botto	om Section	n Section			
٦	TEST 1	Т	EST 2	٦	TEST 1	TES	ST 1	TES	ST 2	TES	ST 3		
Depth	Time (sec)	Depth	Time (sec)	Depth	Time (sec)	Depth	Time (sec)	Depth	Time (sec)	Depth	Time (sec)		
0	0	0	0	0	0	0	0	0	0	0	0		
1	33	1	134	2	5	2	4	2	2	2	12		
2	67	2	252	4	12	4	8	4	6	4	25		
3	3 103 3 4 142 4		310	0	22	0	14	0	11	0	3/		
4	145	4	422	8	31	8 10	20	0	15	ð 10	48		
5	184	0	1084	10	40 54	10	27	10	20	10	02 75		
7	220	0 10	1/73	14	54 62	12	40	14	24	14	87		
8	200	12	1816	14	76	14	40	14	34	14	102		
9	338	14	2126	18	87	18	57	18	40	18	118		
10	380	16	2548	20	98	20	67	20	46	20	132		
11	421	18	2967	22	110	22	77	22	52	22	149		
12	464	20	3320	24	121	24	87	24	59	24	164		
15	603	22	3743	26	131	26	104	26	66	26	179		
18	759	24	4201	28	148	30	122	28	76	28	198		
20	850			30	160	32	170	35	127	30	214		
22	926			32 200		34	34 181		39 144		232		
24	1107		34	209	36	194	43	164	34	246			
26	1220			38 233		38	208	46	174	36	257		
28	1340			40	245	40	224	49	186	38	271		
30	1480			42	256	42	230	51	197	40	283		
				44	272	44	246	53	204	42	294		
				46	286	46	263	55	215	44	320		
				48	300	48	280	57	224	46	337		
				50	314	50	298	60	242	48	350		
				52	331	52	319	65	284	50	360		
				54	347	54	340 261	68 72	296	52	3/4		
				50 58	303	50	301 285	74	319	54 56	389 404		
				50 60	396	50 60	412	74	340	58	404		
				62	411	62	412	78	352	50 60	437		
				64	463	64	505	80	369	62	451		
				66	484	66	532	82	385	64	500		
				68	500	68	559	84	402	68	518		
				70	520	70	596	86	416	70	528		
				72	538	72	623	88	432	72	539		
				74	560	74	662	90	446	74	557		
				76	574	76	702	92	462	76	571		
				78	592	78	745			78	586		
				80	620	80	791			80	598		
				82	645	82	837			82	617		
				84	663	84	895			84	633		
				86	678	86 941				86	652		
				88	702	88	996			88	668		
				90	725	90	1061			90	684		
				92	743	92	1108			92	698		
L				94	759	94	1172			94	714		

Appendix C Borehole Reports, Core Photography and Explanatory Notes

CLIENT: ARUP PROJECT: Pacific LOCATION: Tinten JOB NO: 06622⁻

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140
 COORDS: 552130.1 m E
 6820900 m N
 56
 MGA94
 DRILL RIG:
 Pioneer
 120

 SURFACE RL:
 120.20 m
 DATUM:
 AHD
 DRILLER:
 North
 Coast
 D

 INCLINATION:
 -90°
 LOGGED:
 BC
 DA

SHEET: 1 OF 6 DRILL RIG: Pioneer 120 DRILLER: North Coast Drilling LOGGED: BC DATE: 7/11/06 CHECKED: CSC DATE: 6/2/07

HOLE DIA: 100/76 mm HOLE DEPTH: 32.00 m

			Dril	Drilling Sampling Field Ma									al Description								
/09/2007 2:35:37 PM	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS								
DT 05/				0.0-	120.20			× ·	MH	Clayey SILT, with trace fine gravel, high plasticity, red			RESIDUAL SOIL	Γ.							
PH.GPJ GAP6_0-BETA-PH.G				0.5	0.80 119.40	SPT 1.00-1.45 m			MH	Clayey Gravelly SILT, high plasticity, red with grey zones, fine to medium subangular gravel. Inferred residual weathered basalt (rock flour)	M-D	St-VSt	RESIDUAL to Extremely Weathered ROCK	· · · · · · · · · · · · · · · · · · ·							
ATA/7870 GINT\06622140	ADT			- - - 1.5 - - - -		7,9,13 N = 22								· · · · ·							
ELD AND LABORATORY D				2.0	<u>2.65</u> 117.55	SPT 2.50-2.95 m 1,2,4 N = 6				Iron staining appearing in sample in microfractures											
EFERRED ROUTE/7000 FIE				3.0	2.90 117.30				MH	Clayey SILT, with trace of fine gravel, high plasticity, dark brown with lighter brown and red zones, some <2mm amygdules present. Inferred residual amygdaloidal basalt (rock flour)											
6622140_ARUP_T2E PRE		М		- - 4.0		SPT 4.00-4.45 m 3,8,9 N = 17					ω	F-St		· · · · · · · · · · · · · · · · · · ·							
AGE J:\06PROJ\101-150\0	WB			4.5			× × × × × ×							-							
07-07-02.GLB FULL P				5.5— - - 6.0—		SPT 5.50-5.95 m 2,3,4 N = 7															
TERED BY DATGEL 20				- - - 6.5 - -										·							
NE_25.06.07 SRAS AL						SPT 7.00-7.45 m 4,6,10 N = 16						St								
P6_0-BETA_NEW OI				7.5— - - - - 8.0—					read			as be									
GA					geo	technical purposes o information only	nly, and	withou do no	t atte	empt to assess possible contamination. Any references to po cessarily indicate the presence or absence of soil or groundw	otent	ial co	amination are for GAP gINT FN. F0)1a							

CLIENT:ARUPPROJECT:Pacific Highway UpgradeLOCATION:Tintenbar to EwingsdaleJOB NO:06622140

COORDS: 552130.1 m E6820900 m N56MGA94DRILL RIG: Pioneer120SURFACE RL:120.20 mDATUM: AHDDRILLER: North Coast DINCLINATION:-90°LOGGED: BCDA

SHEET: 2 OF 6 DRILL RIG: Pioneer 120 DRILLER: North Coast Drilling LOGGED: BC DATE: 7/11/06 CHECKED: CSC DATE: 6/2/07

HOLE DIA: 100/76 mm HOLE DEPTH: 32.00 m

		Dri	lling		Sampling				Field Material Description											
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS								
GAP6_0-BETA-PH.GDT 05			8.0 - - 8.5 - -		SPT 8.50-8.95 m 3,4,6 N = 10			MH	Clayey SILT, with trace of fine gravel, high plasticity, dark brown with lighter brown and red zones, some <2mm amygdules present. Inferred residual amygdaloidal basalt (rock flour)			RESIDUAL to Extremely Weathered ROCK								
GINI (06622140 PH.GPJ (9.0 - - 9.5									-								
ABORATORY DATA//8/0 WB	м		- - 10.0 - - -	<u>10.00</u> 110.20	SPT 10.00-10.45 m 4,5,5 N = 10				Brown with red ironstaining, seams of black sandy CLAY $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	-										
ROUTE/7000 FIELD AND L			10.5 - - - 11.0 - - -									-								
PREFERRED			- 11.5— -	<u>11.55</u> 108.65 11.80	SPT 11.50-11.64 m 25 for 150mm				BASALT, grey with red iron staining, highly weathered, low strength			Weathered ROCK								
ARUP_12E			- 12.0—	108.40					For Continuation Refer to Sheet 3			-								
101-150\06622140			- - 12.5 -									-								
E J:/06PROJV			- 13.0									-								
02.GLB FULL PAG			- 13.5									-								
AIGEL 2007-07-												-								
ALTERED BY D																				
25.06.07 SKAS			15.0																	
BEIA_NEW ONE			15.5									-								
GAP6_U-E	┙	⊥_	16.0	 geo	L	i nly, and	ust be withou d do no	reac reac t atte	L Absolution with accompanying notes and abbreviations. The conjunction with accompanying notes and abbreviations. The presence of absolution and the presence of absolution of groundwith the presence of absolution of soil or groundwith the presence of absolution of the presence of soil or groundwith the presence of absolution of the presence of soil or groundwith the presence of the presence	It hat tent ater	as be ial co	L								

G AS	older sociates

CLIENT: PROJECT: LOCATION: JOB NO: ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140
 COORDS: 552130.1 m E
 6820900 m N
 56 MGA94
 DRILL RIG: Pioneer
 120

 SURFACE RL:
 120.20 m
 DATUM: AHD
 DRILLER: North Coast D
 D

 INCLINATION:
 -90°
 LOGGED:
 D
 D

SHEET: 3 OF 6 DRILL RIG: Pioneer 120 DRILLER: North Coast Drilling LOGGED: BC DATE: 7/11/06 CHECKED: CSC DATE: 6/2/07

HOLE DIA: 100/76 mm HOLE DEPTH: 32.00 m

		0	Drillir	ıg			Field Material Description						Defect Information				
METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	EL nos co-				DEFECT DESCRIPTION & Additional Observations	AVERAGE DEFECT SPACING (mm) 0000000000000000000000000000000000		3000	
				8.0 8.5 9.0 9.5 10.0 11.0 11.5 	11.80		Continuation of Sheet 2										
		100	66 (100)	12.0 	<u>11.90</u> 108.30		Clayey SILT, brown with red iron staining, zones of intact rock, high plasticity BASALT, grey with some red and brown iron staining in joints	FR				•	11.80-11.96m: fine to coarse subangular gravel with clayey silt 12.02m: J, 15°, Un, Sm, Ct, 2mm, black silt 12.12m: J, 55°, Un, Sm, Vr, calcite, 1mm 12.13-12.30m: J, 80-90°, Un, Sm, Vr, calcite, 1mm 12.30-12.33m: J, 25°, sp=25mm, Pl, Sm, Sn, 3mm 12.54m: J, 20°, Pl, Sm, Vr, calcite, 2mm 12.59m: J, 15°, Un, Sm, Vr, calcite, 2mm 12.95m: J, 35°, Un, Sm, Sn, 3mm				
NMLC		100	83 (100)	13.5 									13.47m: J, 5°, Un, Sm, Vr, calcite, 1mm 14.05m: J, 30°, Pl, Sm, Vr, calcite, 1mm 14.06-14.14m: J, 85°, Un, Sm, Vr, calcite, <1mm 14.15m: J, 5°, Un, Sm, Sn, 2mm 14.35-14.65m: J, 75°, Un, Sm, Ct, silty clay, 3mm 14.42-15.80m: J, 0°, sp=100-300mm, Un, Sm, Vr, limonite, 1mm				
		100	90 (100)	15.0 — - - 15.5 — -				SW	/			•	14.85m: J, 35°, Un, Sm, Vr, calcite, 1mm 14.95m: J, 30°, Un, Sm, Vr, calcite, 1mm 15.20-15.30m: J, 70°, Un, Sm, Ct, limonite, 10mm 15.80-16.05m: J, 80°, sp=80mm, Pl, Sm, Vr, calcite.				
	⊥	L		_ و	This geotech	report	of borehole must be read in conjunction with acc urposes only, without attempt to assess possible	⊥ _ ompa conta	anyi ami	⊥l ng r natio	note	es a	2mm abbreviations. It has been prepared for y references to potential contamination are for of only or groundwater contamination.	ᆈᆚ		⊥ Fr	122

NT: JECT ATIO NO:	G SS T: N:	ARI Pac Tint 066	UP cific Hig tenbar 522140	ghway to Ew	COORDS: 552130. Upgrade SURFACE RL: 120 ringsdale INCLINATION: -90 HOLE DIA: 100/76	1 m E 0.20 r mm	• 68 n [HC	320900 DATUM	SHEET: 4 OF 6 m N 56 MGA94 DRILL RIG: Pioneer 120 CHD DRILLER: North Coast Drilli LOGGED: BC DATE PTH: 32.00 m CHECKED: CSC DATE	ng : 7/11/06 : 6/2/07
TCR	Stan (SCR)	DEPTH (meters)	DEPTH	GRAPHIC -OG	Field Material Description	WEATHERING	INI STI sl v 0:03 sl	FERRED RENGTH (50) MPa	Defect Information DEFECT DESCRIPTION & Additional Observations	AVERAGE DEFECT SPACING (mm)
100	80 (100)	16.0— 16.5— 17.0— 17.5— 18.0— 18.5— 19.0—	<u>17.20</u> 103.00		BASALT, grey with some red and brown iron staining in joints Amygdaloidal BASALT, mottled brown and red with calcite amygdules (1-3mm)	SW MW		T	 16.18m: J, 0-20°, Un, Sm, Vr, calcite, 1mm 16.28-16.45m: J, 75°, Un, Sm, Sn, 4mm, iron staining 16.80m: J, 40°, Un, Sm, Vr, calcite, 1mm 17.01m: J, 55°, Un, Sm, Sn, 3mm 17.05m: J, 0°, Un, Sm, Ct, 2mm, clayey silt 17.17m: J, 5°, Un, Sm, Ct, 2mm, clayey silt 17.50-17.56m: J, 40°, sp=60mm, Pl, Sm, Cn, 1mm 17.60m: J, 30°, Un, Sm, Ct, silty clay, 1mm 17.68m: J, 40°, Un, Sm, Ct, silty clay, 5mm 17.83-18.40m: J, 0-15°, sp=30-200mm, Un, Sm, Cn, 2mm 18.73m: J, 0°, Un, Sm, Cn, 1mm 18.73m: J, 0°, Un, Sm, Cn, 2mm 19.01m: J, 65°, Un, Sm, Cn, 2mm 	
100	100 (100)	19.5 20.0 20.5 21.0 21.5	<u>19.80</u> 100.40 <u>21.10</u> 99.10		Vesicular BASALT, grey with some green staining, 2-10mm vesicles BASALT, dark grey and pale grey	FR			20.50m: J, 65°, Un, Sm, Cn, 1mm 20.58m: J, 55°, Un, Sm, Cn, 1mm 21.13m: J, 0-20°, St, Sm, Vr, calcite, 2mm 21.47m: J, 0-5°, Un, Sm, Ct, silty clay, 4mm 21.68m: J, 20°, Un, Sm, Ct, silty clay, 6mm	
100	100 (100)	22.0- 22.5- 23.0- 23.0- 22.5- 22				×	22.07m: J, 5°, Un, Sm, Vr, calcite, 3mm 22.36m: J, 10°, PI, Sm, Vr, calcite, 1mm 22.75-23.43m: J, 90°, Un, Sm, Vr, calcite, <1mm 23.15-24.60m: J, 0-5°, sp=100-300mm, Un, Sm, Vr,			
		VT: JECT: NTION: NO:	COOLE VT: ARI JECT: Pac TION: Tint NO: 066 Drilling 16.0 100 16.0 100 16.0 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 20.0 100 1000 20.0 21.0 21.0 22.0 100 20.0	Colder Associates NT: ARUP JECT: Pacific Hig ATION: Tintenbar NO: 06622140 Drilling JECT: Brilling JECT: Brilling <td>Social Social Social</td> <td>Production ARUP COORDS: 552130. IECT: Pacific Highway Upgrade SURFACE RL: 120. IND: Tintenbar to Ewingsdale INCLINATION: -90. NO: 06622140 HOLE DIA: 100/76. Image: Construction of the second second</td> <td>Prime ARUP COORDS: 552130.1 m E NT: ARUP SURFACE RL: 120.20 n NTION: Tintenbar to Ewingsdale INCLINATION: -90° NO: 06622140 HOLE DIA: 100/76 mm Image: transmission of the second second</td> <td>ARUP COORDES VT: ARUP COORDS: 552130.1 m E 66 VT: Pacific Highway Upgrade SURFACE RL: 120.20 m E VT: 06622140 HOLE DIA: 100/76 mm HC Vo: 06622140 HOLE DIA: 100/76 mm HC Vo: 06622140 ROCK / SOIL MATERIAL DESCRIPTION Image: statistic statistatistic statistic statistic statistic statistic statistic</td> <td>Concernation Concernation VIT: ARUP COORDS: 552130.1 m E 6820900 VIT: NT: COORDS: 552130.1 m E 6820900 VITON: Thtenbar to Ewingsdale SURFACE RL: 120.20 m DATUM VITON: Thtenbar to Ewingsdale NICLINATION: -90° VITON: Thtenbar to Ewingsdale NICLINATION: -90° VITON: Object 100 Field Material Description HOLE DIA: 10076 mm. HOLE DE VITON: The bar to Ewingsdale ROCK / SOIL MATERIAL DESCRIPTION With Staining in joints VITON: The bar to Ewingsdale ROCK / SOIL MATERIAL DESCRIPTION With Staining in joints VITON: The bar to Ewing to the bar tot the bar to the bar to the bar tot the bar to the b</td> <td>ARUP Paditic Highway Upgrade ECT: SURFACE RL: SURFACE RL:</td>	Social	Production ARUP COORDS: 552130. IECT: Pacific Highway Upgrade SURFACE RL: 120. IND: Tintenbar to Ewingsdale INCLINATION: -90. NO: 06622140 HOLE DIA: 100/76. Image: Construction of the second	Prime ARUP COORDS: 552130.1 m E NT: ARUP SURFACE RL: 120.20 n NTION: Tintenbar to Ewingsdale INCLINATION: -90° NO: 06622140 HOLE DIA: 100/76 mm Image: transmission of the second	ARUP COORDES VT: ARUP COORDS: 552130.1 m E 66 VT: Pacific Highway Upgrade SURFACE RL: 120.20 m E VT: 06622140 HOLE DIA: 100/76 mm HC Vo: 06622140 HOLE DIA: 100/76 mm HC Vo: 06622140 ROCK / SOIL MATERIAL DESCRIPTION Image: statistic statistatistic statistic statistic statistic statistic statistic	Concernation Concernation VIT: ARUP COORDS: 552130.1 m E 6820900 VIT: NT: COORDS: 552130.1 m E 6820900 VITON: Thtenbar to Ewingsdale SURFACE RL: 120.20 m DATUM VITON: Thtenbar to Ewingsdale NICLINATION: -90° VITON: Thtenbar to Ewingsdale NICLINATION: -90° VITON: Object 100 Field Material Description HOLE DIA: 10076 mm. HOLE DE VITON: The bar to Ewingsdale ROCK / SOIL MATERIAL DESCRIPTION With Staining in joints VITON: The bar to Ewingsdale ROCK / SOIL MATERIAL DESCRIPTION With Staining in joints VITON: The bar to Ewing to the bar tot the bar to the bar to the bar tot the bar to the b	ARUP Paditic Highway Upgrade ECT: SURFACE RL: SURFACE RL:

CLIENT: PROJECT: LOCATION: JOB NO: ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale COORDS: 552130.1 m E 6820900 m N 56 MGA94 SURFACE RL: 120.20 m DATUM: AHD INCLINATION: -90°

SHEET: 5 OF 6 DRILL RIG: Pioneer 120 DRILLER: North Coast Drilling LOGGED: BC DATE: 7/11/06 CHECKED: CSC DATE: 6/2/07

JO	3 N(D:		066	22140		HOLE DIA: 100/76	mm	Н	IOLE	E DEI	PTH: 32.00 m CHECKED: CSC DATE	: 6/2/07
		D	Drillir	ng			Field Material Description					Defect Information	
	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	EL 0.03 S	NFER TREN Is ₍₅₀₎ I	RED NGTH MPa - m P - m P	DEFECT DESCRIPTION & Additional Observations	AVERAGE DEFECT SPACING (mm) 0000000000000000000000000000000000
	_			24.0— 24.5— 25.0— 25.5—			BASALT, dark grey and pale grey	FR				24.50m: J, 20°, Un, Sm, Vr, calcite, 1mm 24.75m: IS, 55°, Pl, Sm, 2mm, calcite filling 24.90m: J, 20°, Un, Sm, Vr, calcite, 2mm 25.03-27.90m: J, 0-5°, sp=100-400mm, Un, Sm, Vr, calcite, 1mm 25.30-25.44m: J, 75°, Pl, Sm, Sn, fused, iron staining	
		100	100 (100)	26.0 26.5 27.0							*	26.90m: J, 30°, Un, Sm, Vr, calcite, 2mm 25.51-25.58m: J, 80°, Sm, Vr, calcite, 1mm 26.25m: J, 20°, Pl, Sm, Vr, calcite, 1mm 26.60-26.90m: J, 80°, Un, Sm, Vr, calcite, <1mm 26.90m: J, 55°, Un, Sm, Vr, calcite, <1mm	
MMILO				27.0 27.5 28.0	- - - - - - - - - - - - - - - - - - -		Vertical microfractures at 27.60-27.90m				•	27.70m: J, 30°, Un, Sm, Vr, calcite, 1mm 27.80m: J, 20°, Un, Sm, Vr, calcite, 1mm 27.90-28.25m: J, 80°, Un, Sm, Vr, calcite, 1mm	
				28.5— - - - - 29.0—							••	28.30-30.40m: J, 0-5°, sp=200-300mm, Un, Sm, Vr, calcite, 1mm	
		100	100 (100)	29.5 - - - - - - 30.0 - -							*	29.50m: J, 20°, PI, Sm, Vr, calcite, 1mm	
				30.5 - - - 31.0-	<u>30.50</u> 89.70		Vesicular BASALT, grey 2-10mm vesicules, some green calcite deposits in vesicles	MW	/			30.50m: J, 65°, Un, <1mm	
		100		- - - 31.5 - -			END OF BOREHOLE @ 32.00 m Reached target depth					31.20m: J, 60°, PI, Sm, Vr, calcite, 1mm 31.30-31.80m: J, 35°, sp=200mm, Un, Sm, Vr, calcite, 1mm	

This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

Piezometer installed
CLII PRO LOC	EN OJE CAT	T: ECT: FION O:	:	ARUP Pacific Tinten 06622	c High Ibar to 140	COORDS: 5 way Upgrade SURFACE I b Ewingsdale INCLINATIO HOLE DIA:	52130.1 m E 6820900 m N 56 MGA94 RL: 120.20 m DATUM: AHD NN: -90° 100/76 mm HOLE DEPTH: 32.00 m	SHEET: DRILL RI DRILLER LOGGED CHECKE	1 OF 1 G: Pioneer 120 : North Coast Drilling : BC DATE: 7/11 D: CSC DATE: 6/2/
_		Drill	ing			Field Material Description	Instrume	ntation Detai	ls
	WATER	DRILL FLUID LEVELS	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ABBREVIATED SOIL / ROCK MATERIAL DESCRIPTIOI (Refer to Report of Borehole For Details	N)		
		6	·	120.20	×	Clayey SILT	·····		Steel gatic cover
-				119.40	× ·	Clayey SILT			Comont
		2	-	-	× ×				
				2.90 117.30	<u> </u>	Clayey SILT			
		4	. –	-	×				— Sand 2mm graded
					× 				
		6		1	× .				
			•		×				
		a					7.80, RL112.40		
				-	<u> </u>		<u>8.50, RL111.70</u>	• • • •	Bentonite pellets
				-	× ·				
		10		1	×			· · · ·	
			•	11.55		DADALT			
		12		108.30		BASALT Clayey SILT			
				-		BASALT			
		14		-	$\left[\right] $				
	202		•	-					
	/08/2(16	-	1	$\left(\begin{array}{c} \cdot \\ \cdot $				
1	¥			17.20	$\left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)^{\times}$				
		19		103.00		BASALT			
	₽1			-	$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)^{\vee}$				
	07/20			19.80					
	30/	20		100.40		BASALT			
				<u>21.10</u> 99.10		BASALT			
		22	-	-	$\left(\begin{array}{c} & & \\ & & \\ & & \\ & & \end{array} \right)$				
				-	$\langle v \rangle$				
		24		-					
				1					
		26							
		20	-	27.60					
		40		92.30	$\left \begin{array}{c} & \\ & \\ & \\ & \end{array} \right $				
				-	Į,				— 50mm PVC screen
		30		30.50	$\left(\begin{array}{c} & & \\ & & \\ & & \\ & & \end{array} \right)$	ΡΑΣΑΙΤ			
					$\left(\begin{array}{c} \cdot \\ \cdot \\ \cdot \end{array} \right)$				
+	+	32		32.00 88.20	۲×۰,		32.00, RL88.20		
				-					
		34		-					
			•	1					

RL0

CLIENT:

JOB NO:

PROJECT:

LOCATION:

REPORT OF CORE PHOTOGRAPHS: BH1021

		SHEET: 3	OF 3	
ARUP	COORDS: 552130.1 m E 6820900 m N 56 MGA94	DRILL RIG	Pioneer	120
Pacific Highway Upgrade	SURFACE RL: 120.20 m DATUM: AHD	DRILLER:	North Coa	st Drilling
Tintenbar to Ewingsdale	INCLINATION: -90°	LOGGED:	BC	DATE: 7/11/06
06622140	HOLE DIA: 100/76 mm HOLE DEPTH: 32.00 m	CHECKED	CSC	DATE: 6/2/07

This report of core photographs must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

CLIENT: PROJECT: LOCATION:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale

COORDS: 552131.3 m E 6820901.9 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 120.18 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 2 DRILLER: North Coast Drilling LOGGED: AM

DATE: 8/7/07

	Sampling		Field Material Description	
METHOD PENETRATION RESISTANCE WATER DEPTH (metres) Mad	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	
L L L L L L L L L L L L L L L L L L L	<u>00</u> 3.18		Sandy CLAY, medium plasticity, red brown, medium grained sand, with fine subangular gravel, trace root fibres upper 200mm Sandy CLAY, high plasticity, brown	
4.5 5.0 5.5 6.0 6.5 7.0 7.5 M	<u>00</u> 5.18		BASALT, extremely weathered, extremely low strength, reworks to CLAY, high plasticity, red brown, with fine to medium grained sand.	

Field Material Description

CLIENT: PROJECT: LOCATION: JOB NO:

Drilling

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

Sampling

COORDS: 552131.3 m E 6820901.9 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 120.18 m DATUM: AHD INCLINATION: -90° HOLE DIA: 100 mm HOLE DEPTH: 11.00 m

SHEET: 2 OF 2 DRILLER: North Coast Drilling DATE: 8/7/07

LOGGED: AM CHECKED: CSC DATE: 10/8/07

09/2007 2:36:25 PM	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
.GDT 05				8.0						BASALT, extremely weathered, extremely low strength, reworks to CLAY, high plasticity, red brown, with fine to			EXTREMELY WEATHERED ROCK	T
3ETA-PH.				-						medium grained sand.				
SAP6_0-E				- 0.5										
H.GPJ G				- 9.0—				$\begin{pmatrix} & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & $						-
22140 P				-				$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						
GINT/066	ADT	м		9.5-										-
TA\7870				-										
ORY DA				10.0										-
ABORAT				-										
D AND L				10.5										-
000 FIEL				- - 11.0	11.00									
ROUTEV				-	109.18					END OF BOREHOLE @ 11.00 m Piezometer installed Note: borehole drilled for piezometer installation only				
ERRED				11.5-										-
2E PREF				-										
				12.0-										-
622140				-										
01-150\06				12.5										-
SPROJ/10				-										
GE J:/06														
FULL PA				- 13.5—										-
02.GLB				-										
2007-07				14.0										-
DATGEL				-										
RED BY				14.5										-
AS ALTE				-										
16.07 SR/				15.0										-
NE_25.0				- - 15 5										
V NEW C														
0-BETA				- 	_]			L_		L	
GAP6					geo	This report of boreho technical purposes of information only	ole m only, / and	iust be withou	read tatte	I in conjunction with accompanying notes and abbreviations. empt to assess possible contamination. Any references to p ressarily indicate the presence or absence of soil or groundy	It h oteni vater	as be tial co	een prepared for ontamination are for amination GAP gINT FN. F	01a

CLIENT: PROJECI LOCATIO JOB NO:	⊺: N:	ARUP Pacific Tinten 06622	c Highwa bar to E 140	ay Upgrade wingsdale	COORDS: 552 SURFACE RL: INCLINATION: HOLE DIA: 10	52131.3 m E 6820901.9 m N 56 MGA94 DRILL RIG: Pioneer 120 L: 120.18 m DATUM: AHD DRILLER: North Coast Drillin N: -90° LOGGED: AM DATE: 100 mm HOLE DEPTH: 11.00 m CHECKED: CSC DATE:							
Dri	lling			Field Material De	scription	Ins	trumentation	Details					
WATER DRILL FLUID LEVELS	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ABBREV SOIL / ROCK MATER (Refer to Report of Bo	IATED RAL DESCRIPTION prehole For Details)								
Groundwater Not Observed	1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	<u>2.00</u> 118.18 <u>5.00</u> 115.18 <u>110.18</u>		andy CLAY		5.00, RL115.18 6.70, RL113.48 8.00, RL112.18		Bentonite Sand 2m Sand 2m Sand 2m Sand 2m	e cement grout mix				

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 552152.5 m E 6820944.8 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 117.82 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 4 DRILLER: North Coast Drilling DATE: 10/7/07

HOLE DIA: 100/76 mm HOLE DEPTH: 20.10 m

LOGGED: AM CHECKED: CSC DATE: 10/8/07

			Drill	ling		Sampling				Field Material Descr	iptio	n		
(09/2007 2:36:59 PM	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
T 05/				0.0-	117.82			<u> </u>	СН	Sandy CLAY, high plasticity, red brown, medium grained			RESIDUAL SOIL	1-
I.GD1				-						sand, with root fibres upper 100mm				
-⊢ ⊢				-										
H				0.5-										-
P6_0	⊢			_				<u> </u>	F		L)	1		
ЧGЧ	8	L		-							⊻ ≥	o		
H.GP				1.0-		SDT 1 00 1 27 m		(-
40 PI				-		8,11,9/70mm HB		•••						
6221				-	<u>1.30</u> 116.52	-		<u> </u>		Grading to extremely weathered basalt				
90,TV				-1.5	1.50		_	<u> </u>		En Operational Statement of Sta				-
70 GI				-	110.52					For Conundation Relef to Sheet 2				
A\78				-										
DAT				2.0-										_
IOR)				-										
ORA-				-										
ГAВ				2.5-										_
AND														
				-										
000				3.0-										_
1EV				-										
RO				-										
2 RE				35-										_
Ш				- 0.0										
ЩЦ				-										
E L				40-										_
ARL														
2140				-										
0662				45-										_
-150														
U/101				-										
SPRC				- 50										_
Ю/:Г				- 5.0										
AGE				-										
Ľ,				-										
ш щ				5.5										
02.GI				_										
002				60-										
L 200				6.0										-
TGE				-										
ZDA														
ШШ				0.5-										-
LTER				-										
AS A														
1 SR				7.0	1									-
5.06.0				-										
іх Щ														
ó ≯				7.5-										-
uz⊿				-										
-BET/				-	-									
ė Be			l.	-8:0	<u> </u>	This report of borebol	 o m				 th		⊥	<u>ــــــــــــــــــــــــــــــــــــ</u>
GA					geo	technical purposes o	nly,	withou	it atte	empt to assess possible contamination. Any references to p	otent	tial co	ontamination are for	
						information only	and	do no	ot ne	cessarily indicate the presence or absence of soil or ground	vater	cont	amination. GAP gINT FN. FC	

CLIEN PROJ OCA OB N	IT: ECT TIOI IO:	-: N:	ARI Pac Tint 066	JP ific Hiç enbar 22140	jhway to Ew	COORDS: 55 Upgrade SURFACE Ri ingsdale INCLINATION HOLE DIA: 1	52152.5 m l L: 117.82 l N: -90° 100/76 mm	E 682 m D. HOI	209 ATI	UM: DEF	SHEET: 2 OF 4 8 m N 56 MGA94 DRILL RIG: Pioneer 120 AHD DRILLER: North Coast Drill LOGGED: AM DATE PTH: 20.10 m CHECKED: CSC DATE	ing :: 1(:: 1()/7/I)/8/I
		Drillir	ng	1		Field Material Descr	ription		EDD		Defect Information		
WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIP	MEATHERING	STR Is _© 0.03 E		ED STH Pa ∞ ^Ω H⊟	DEFECT DESCRIPTION & Additional Observations	A 2 30 30 40	VERA DEFE PACI (mm
5.2%	100 75 100	30 (70) 38 (72) 25 (65) 30 (60)	0.5 	1.50 1.65 116.17 2.30 2.40 115.42 2.65 2.75 115.07 3.40 114.42 4.20 113.62		Continuation of Sheet 1 BASALT, dark grey red and pale grey, with heavy iron staini NO CORE 2.30-2.40m BASALT, red and pale grey, with heavy staining dark grey red and pale grey, with heavy iron staini red and pale grey, with 1-2mm diameter stained amygdules	iron HW				 1.63-1.96m: Set 1, J, 15°, sp=80mm, Un, Ro, Sn, Iron staining 2.15m: J, 0°, Un, Sm, Cn 2.22m: J 2.40-2.52m: Core recovered as fragmented rock 2.61-3.00m: Set 1, J, 5°, sp=80mm, Pl, Sm, Sn, Iron staining 3.00-3.30m: Network of iron cemented microfractures 3.08m: J, 5°, Un, Sm, Sn, Iron staining 3.30-3.55m: Core recovered as fragmented rock 3.65m: J, 20°, Pl, Ro, Cn 4.14m: J, 5°, Un, Ro, Cn 		
	88	13 (44)	5.0 5.5 5.5 6.0	4.90 112.92 5.60 5.70 112.12 6.10		BASALT, brown and pale grey, with iron staining NO CORE 5.60-5.70m BASALT, brown and pale grey, with iron staining	HW				5.10-5.60m: Set 1, J, 10°, sp=60mm, Un, Ro, Cn 5.70-5.80m: Core recovered as fragmented rock 5.88m: J, 0°, Un, Ro, Cn		
	40	20 (25)	6.5 	6.70 111.12		NO CORE 6.10-6.70m BASALT, brown and pale grey, with iron staining	- HV				6.73-6.83m: Core recovered as fragmented rock 6.91m: J, 10°, Un, Ro, Cn		
	66	0	7.5	7.30 110.52 7.65 110.17 7.90		NO CORE 7.30-7.65m BASALT, brown and pale grey, with iron staining	HW				7.06m: J, 50°, Un, Ro, Cn 7.11m: J, 45°, Pl, Ro, Cn 7.18m: J, 10°, Un, Sm, Cn 7.69m: J, 10°, Pl, Ro, Cn 7.73m: J, 0°, Pl, Sm, Cn		

٦

CL PR LO JO	IEN OJE CA ⁻ B N	Т: ЕСТ ГЮІ О:	.SS :: N:	ARU Pac Tint 066	JP ific Hig enbar 22140	hway to Ew	COORDS: 552152 V Upgrade SURFACE RL: 11 vingsdale INCLINATION: -9 HOLE DIA: 100/7	.5 m l 7.82 i 0° 6 mm	E 682 m DA HOL	0944.8 TUM: <u>E DE</u> I	SHEET: 3 OF 4 8 m N 56 MGA94 DRILL RIG: Pioneer 120 AHD DRILLER: North Coast Drilli LOGGED: AM DATE: PTH: 20.10 m CHECKED: CSC DATE:	ng : 10/7/07 : 10/8/07
Т		C	Drillir	g]	Field Material Description		INFE	RRED	Defect Information	
	WATER	TCR	RQD (SCR)	DEPTH (meters)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STRE Is(50) 00000000000000000000000000000000000	NGTH MPa G _{← ∞} ♀ ≥ ± ₹ ⊞	DEFECT DESCRIPTION & Additional Observations	AVERAGE DEFECT SPACING (mm)
			(0)	8.0			NO CORE 7.90-8.30m					
		100	50 (86)	- - 8.5 - -	8.30 109.52		BASALT, brown and pale grey, with iron staining	HW			8.35-8.70m: Set 1, J, 15°, sp=70mm, Pl, Ro, Cn 8.85m: J 0° Pl Sm Cn	
		88	35 (50)	9.0— - - 9.5—	9 70						8.91m: J, 0°, Un, Sm, Cn 9.11-9.70m: Set 1, J, 20°, sp=90mm, Un, Sm, Sn, Slight iron staining	
				-	108.12		NO CORE 9.70-10.00m					
	2000 L	83	66 (80)	10.0— - - 10.5—	<u>10.00</u> 107.82		BASALT, grey and brown, with 2-10mm diameter calcium amygdules, with iron staining	g HW	/		10.06m: J, 5°, Un, Ro, Cn 10.19m: J, 0°, Pl, Ro, Cn 10.33m: J, 25°, Un, Ro, Cn 10.50m: J, 60°, Pl, Sm, Ct, 2mm, Clay	
				-	-						10.54m: J, 50°, PI, Sm, Cn	
		100	33 (89)	11.0— - - - 11.5— -							10.88-10.95m: Core recovered as fragmented rock 11.17m: J, 10°, PI, Sm, Cn 11.26m: J, 45°, Un, Ro, Cn 11.39-11.65m: Set 1, J, 20°, sp=70mm, PI, Ro, Sn, Iron staining 11.72-11.88m: Set 1, J, 40°, sp=60mm, PI, Sm, Sn,	
		100	25 (44)	12.0 - - - 12.5 - - -							Slight fron stain 11.85m: J, 0°, Un, Ro, Cn 11.90m: J, 0°, Un, Sm, Cn 12.12m: J, 35°, Un, Sm, Cn 12.28m: J, 35°, PI, Sm, Cn 12.37m: J, 30°, Un, Sm, Cn 12.37-12.47m: DS 12.47-12.70m: Set 1, J, Un, Ro, Cn	
		100	56 (64)	13.0— - - 13.5— - -							13.13-13.23m: Core recovered as fragmented rock 13.29m: J, 60°, PI, Sm, Sn, Slight iron staining 13.34m: J, 0°, PI, Sm, Sn, Slight iron staining 13.43-13.53m: Set 1, J, 0-10°, sp=40mm, Un, Sm, Cn 13.70m: J, 10°, PI, Sm, Vr, calcite, 3mm thick 13.81m: J, 30°, Un, Ro, Cn	
				14.0-								
				- - 14.5—							14.12-14.24m: Core recovered as fragmented rock 14.29m: J, 25°, Un, Ro, Cn 14.36-14.74m: Set 1, J, 40°, sp=110mm, Pl, Ro, Cn	
		83	25 (50)	- - 15.0— - -	<u>15.20</u> 102.62 15.40		NO CORE 15.20-15.40m				14.82m: J, 15°, Un, Ro, Cn 15.00-15.13m: J, Core recovered as fragmented rock	
		86	14 (50)	- 15.5 - - -	102.42		BASALT, pale grey and brown, with 2-10mm diameter calcium amygdules, with iron staining	g HW			15.55-15.87m: Set 1, J, 5°, sp=110mm, Un, Ro, Cn	

	NT: JEC ATIC	T: DN:	ARUP Pacific Tinten	e Highwa	ay Upgrade wingsdale	COORDS: 552 SURFACE RL: INCLINATION:	152.5 m E 6820944.8 m 117.82 m DATUM: Ał -90°	N 56 MGA94 HD	SHEET: 1 DRILL RIG: DRILLER: 1 LOGGED: 7	OF 1 Pioneer 120 North Coast Drill	ing :: 10/7/0
JOB	NO:		06622	140		HOLE DIA: 100	D/76 mm HOLE DEPTH	l: 20.10 m	CHECKED:	CSC DATE	: 10/8/0
WATER		DEPTH (matrac)	DEPTH RL	GRAPHIC LOG	ABBREVIAT SOIL / ROCK MATERIAL (Refer to Report of Boreh	ED DESCRIPTION ole For Details)				Steel gatic cover	
70% 50% 10%	D. D. D.	2 - 4 - 8 -	1116.17 2.30 1115.17 - 115.17 - 115.17 - 115.17 - 1115.17 - 1115.17 - 1115.17 - 1115.17 - 1115.17 - 1115.17 - - - - - - - - - - - - -		ASALT ASALT ASALT ASALT ASALT ASALT ASALT ASALT ASALT ASALT ASALT					Bentonite cement	grout mix
		12 - 14 -					<u> 12.50, </u> <u> 15.00, </u>	<u>RL105.32</u> <u>RL102.82</u>	-	Bentonite granules	
		16 -	- 102.42 16.00 - 101.67		O CORE ASALT O CORE ASALT	/	17.10,	RL100.72		Sand 2mm graded	
IK 22/08/2007	7	18 -			ASALT					3mm PVC screen	
30/07/2007 M	4	20 -	<u>20.10</u> 97.72				20.10	, RL97.72			

CLIENT: PROJECT LOCATIOI JOB NO:	ARUF Pacifi N: Tinter 06622	o c Highway Upgrade nbar to Ewingsdale 2140		(: 	COORDS: 552152.6 m E 6820942.2 m N 56 MG SURFACE RL: 118.03 m DATUM: AHD INCLINATION: -90° HOLE DIA: 100 mm HOLE DEPTH: 10.50 m	A94	t DR DR LO CH	ILL RIG: Pioneer 120 ILLER: North Coast Drilling GGED: AM DATE: 11/7 ECKED: CSC DATE: 10/8
Dri	lling	Sampling		lod	Field Material Descri	ptio	n ⊳nc√	
PENETRA RESISTAN WATER	DEPTH (metres) LTAID LTAID RL	FIELD TEST	GRAPHIC LOG	USC Sym	SOIL / ROCK MATERIAL DESCRIPTION	MOISTUR	CONSISTE DENSITY	ADDITIONAL OBSERVATIONS
H Note Cound water not encountered T	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.5 5.5 5.50 112.53 6.0 -112.53 6.0 -112.53		< <u><<<<<<<<<<<<<<<<<><<<<<<><<<<<<><<<<<<</u>		BASALT, highly weathered, inferred very low strength, reworks to Sandy CLAY, high plasticity orange brown and grey, medium grained sand	W (<pl)< td=""><td></td><td>WEATHERED ROCK</td></pl)<>		WEATHERED ROCK

AP gINT FN. F01a RL2

-

-

-

-

_

-

-

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 552152.6 m E 6820942.2 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 118.03 m DATUM: AHD INCLINATION: -90° HOLE DIA: 100 mm HOLE DEPTH: 10.50 m

SHEET: 2 OF 2 DRILLER: North Coast Drilling DATE: 11/7/07 LOGGED: AM CHECKED: CSC DATE: 10/8/07

		D	rilling		Sampling				Field Material Descr	iptio	n	
09/2007 2:38:07 PM	PENETRATION	RESISTANCE WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
T 05			8.0-]					Inferred low strength			WEATHERED ROCK
AP6_0-BETA-PH.GD			8.5-	-								
522140 PH.GPJ G, ADT	+	4	9.0-	-								
7870 GINT (06)			9.5	-			/ `, /, /,					-
ABORATORY DATA			10.0-	10.50								
ב ק		-	10.5	107.53				1	END OF BOREHOLE @ 10.50 m			
000 FIELD A				-					Piezometer installed Note: borehole drilled for piezometer installation only			
UTE/			-									
PREFERRED RO			- - 11.5— -	-								
2140_ARUP_T2E			12.0-	-								
JV101-150\0662			- 12.5— - -	-								
GE J:\06PRC			13.0-	-								
02.GLB FULL PA			13.5-	-								
vTGEL 2007-07-			14.0-	-								
ALTERED BY DA			14.5	-								
25.06.07 SRAS /			15.0-	-								
ETA_NEW ONE_			15.5 - -	-								
			- _{16:0}]		l]	.		L _		
GAF				geo	technical purposes on information only	e m ily, anc	withou d do no	read tatte ot ne	In conjunction with accompanying notes and abbreviations empt to assess possible contamination. Any references to p cessarily indicate the presence or absence of soil or ground.	it h oteni vater	as be ial co conta	en prepared for ntamination are for amination. GAP gINT FN. F01a

CLIE PRO OC, OB	NT: JECT ATIO NO:	-: N:	ARUF Pacifi Tinter 06622	c High nbar to 2140	nway Upgrade ∋ Ewingsdale	COORDS: 5521 SURFACE RL: INCLINATION: HOLE DIA: 100	52.6 m E 6820942.2 m N 56 M 118.03 m DATUM: AHD -90° mm HOLE DEPTH: 10.50 m	Shee GA94 DRILL DRILL LOGG CHEC	T: 1 OF 1 RIG: Pioneer 120 ER: North Coast Drilling ED: AM DATE: 11/ CKED: CSC DATE: 10/
	Dri	lling			Field Material Descri	ption	Inst	rumentation D	Details
WATER	DRILL FLUID	DEPTH (metres)	DEPTH RL 118.03	× K CRAPHIC	ABBREVIAT SOIL / ROCK MATERIAL (Refer to Report of Boreh Silty CLAY	ED DESCRIPTION ole For Details)	/		Steel gatic cover Cement
		1 -	- - - - - - - - - - - - -		BASALT				 Bentonite cement grout n
Ground water not encountered							<u>4.50, RL113.53</u>		
		6 -	- <u>5.50</u> - 112.53 		BASALT		<u>6.80, RL111.23</u> .		Bentonite granules
		7 -					7.50, RL110.53		Sand 2mm graded
	1	9 -							3mm PVC screen
		1 -	<u>- 10.50</u> _ 107.53 _ _ _	<u></u> V.			<u>10.50, RL107.53 [</u>		<u>·</u>

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

Т

COORDS: 552178.1 m E 6821040.2 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 96.94 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 4 DRILLER: North Coast Drilling DATE: 16/7/07

HOLE DIA: 100/76 mm HOLE DEPTH: 19.80 m

LOGGED: AM CHECKED: CSC DATE: 10/8/07

Single state State State Solution Solution State Solution Solution State State Solution Solution State State Solution State State Solution Solution State Solution			Dri	lling		Sampling				Field Material Descr	iptio	n		
0.0 00.94 00.94 SPT 1.00-146 m SPT	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
1 0.5 1.0 SPT 1.00-14.5 m X 1.5 1.5 X X Image: SPT 1.00-14.5 m 2.0 1.5 X X Image: SPT 1.00-14.5 m 2.0 2.0 SPT 1.00-14.5 m X X 2.0 2.0 SPT 1.00-14.5 m X Image: SPT 1.00-14.5 m 3.5 3.5 SPT 1.2.0-2.95 m X X 3.6 3.6 SPT 1.2.0-2.95 m X 3.8 3.5 N 1.3 X 3.8 3.5 N 1.3 X 3.8 3.5 N 1.3 3.8 3.5 N 1.3 3.8 3.5 N 1.3 3.8 SPT 4.00-4.45 m 4.0 SPT 4.00-4.45 m 5.11.12100mm H8 V/V 1.1 SPT 4.00-4.45 m 5.11 SPT 4.00-4.45 m 5.11 SPT 4.00-4.55 m 5.6 6.6 6.6 SPT 4.00-4.55 m 5.7 SPT 4.00-4.55 m 5.8 SPT 4.00-4.55 m 5.9 SPT 4.00-4.55 m 5.11.2100mm H8 V/V 5.6 SPT 4.00-4.55 m 5.7 SPT 4.00-4.55 m 5.8 SPT 4.00-4.55 m				0.0	96.94			× × × ×	MI	Sandy SILT, medium plasticity, brown, medium grained sand with fine to medium subangular gravel			RESIDUAL SOIL	
3 2 10 10 3 SPT 1 00.1.45 m 47.13 N = 20 10 1.5 1 1.5 <td></td> <td></td> <td></td> <td>0.5</td> <td></td> <td></td> <td></td> <td>× × × × × ×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>				0.5				× × × × × ×						-
1 47.13 N = 20 X X 2.0 X X 2.0 X X X X X X	DP. CP.			- - 1.0—		SPT 1.00-1.45 m		* * * * * •						-
1.5 2.0 2	1041 77000			-		4,7,13 N = 20		× ^ * ×				VSt		
L 2.0 2.5 2.5 2.5 2.5 3.5				1.5				× • × × • ו			(-PL)			-
a 2.5 2.50 <td< td=""><td></td><td></td><td></td><td>2.0</td><td></td><td></td><td></td><td>× × ×</td><td></td><td></td><td>Σ</td><td></td><td></td><td>-</td></td<>				2.0				× × ×			Σ			-
9 3.0 3.5 3.60 3.5 3.5 3.60 3.5 3.5 3.60 3.5 3.5 3.60 3.5 3.60 3.5 3.60 3.5 3.5 3.60 3.5		L		- - 2.5	2.50	SPT 2 50 2 05 m		• × × * × ×		Somo rock structure ovident				-
3.0 3.0 3.5 3.5 5.0 5.11,12/100mm HB No BASALT, grey and orange brown, extremely low to very low strength, highly weathered WEATHERED ROCK 4.0 4.5 4.50 5.11,12/100mm HB No For Continuation Refer to Sheet 2 Image: Continuation Refer to Sheet 2 6.0 6.0 6.0 6.0 6.0 Image: Continuation Refer to Sheet 2 Image: Continuation Refer to Sheet 2				-		3,5,8 N = 13		× × × × × ×						
3.5 3.60 93.44 SPT 4.00-4.45 m BASALT, grey and orange brown, extremely low to very low to very low strength, highly weathered WEATHERED ROCK 4.0 4.5 92.44 SPT 4.00-4.45 m SPT 4.00-4.45 m SPT 4.00-4.45 m 5.11,12/100mm HB 5.11,12/100mm HB For Continuation Refer to Sheet 2 SPT 4.00-4.45 m 6.0 6.5 92.44 SPT 4.00-4.45 m SPT 4.00-4.45 m 7.5 92.44 SPT 4.00-4.45 m SPT 4.00-4.45 m 6.0 6.5 SPT 4.00-4.45 m SPT 4.00-4.45 m 7.5 92.44 SPT 4.00-4.45 m SPT 4.00-4.45 m 6.5 92.44 SPT 4.00-4.45 m SPT 4.00-4.45 m 7.5 92.44 SPT 4.00-4.45 m SPT 4.00-4.45 m 6.5 7.0 SPT 4.00-4.45 m SPT 4.00-4.45 m 7.5 6.5 SPT 4.00-4.45 m SPT 4.00-4.45 m 7.5 8.00 SPT 4.00-4.45 m SPT 4.00-4.45 m 8.00 8.00 SPT 4.00-4.45 m SPT 4.00-4.45 m 92.44 SPT 4.00-4.45 m SPT 4.00-4.45 m SPT 4.00-4.45 m 8.00 SPT 4.00-4.45 m SPT 4.00-4.45 m SPT 4.00-4.45 m 92.44 SPT 4.00-4.45 m SPT 4.00-4.45 m SPT 4.00-4.45 m 8.0 SPT 4.00-	MB			3.0				× × × × × •				St		-
4.0 4.5 4.5 4.5 4.5 4.5 92.44 5.0 5.6 6.0 6.5 6.0 6.5 7.0 7.5 6.0 6.5 6.0				3.5	3.50 93.44			× ^ /		BASALT, grey and orange brown, extremely low to very low strength, highly weathered			WEATHERED ROCK	-
4.5 4.5 92.44 5.0 92.44 5.0 6.5 6.5 6.5 7.0 7.5 7.5 8.0				- 4.0		SPT 4 00-4 45 m								-
4.5 92.4 5.0 5.5 5.5 5.5 6.5 6.5 7.0 7.0 7.0 7.0 8.0 8.0	14 ⁻ 0417200			-	4 50	5,11,12/100mm HB		$\langle \ \lor \ $						
				-4.5	92.44					For Continuation Refer to Sheet 2				
				5.0										-
				- - 5.5										-
	1-01-02.94			-										
				0.0 - -										
				6.5— -										-
				7.0-										-
	1000.62_BN													
≝┟╴┘╴┟╶└ _{┺┅} ┘ ╶└╴╴╴╴╴╴┤┘╴╶│╴┧╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴└╶┘╴┧╴╴╴╴╴╴				c. i -										
This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for			⊥_			This report of borehole		ust be	reac	in conjunction with accompanying notes and abbreviations	L_	as be	en prepared for]_

CL PF LC JC	.IEN ROJE DCA ⁻ DB N	Т: ЕСТ ГЮІ О:	N:	ARI Pac Tint 066	UP cific Hig tenbar 522140	hway to Ew	COORDS: Upgrade SURFACE ingsdale INCLINATIO HOLE DIA:	552178.1 m l RL: 96.94 m DN: -90° 100/76 mm	E 6 1 C H	5821 DATU	040. JM: E DEI	SHEET: 2 OF 4 0.2 m N 56 MGA94 DRILL RIG: Pioneer 120 1: AHD DRILLER: North Coast Drilling LOGGED: AM DATE: 16/7 DEPTH: 19.80 m CHECKED: CSC DATE: 10/8	7/07 8/07
		D	Prillin	ıg			Field Material Des	scription				Defect Information	
METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCR	NOITAI MEATHERING	EL 0.03 S		RED IGTH ⁄IPa -∞₽ <u>∓</u> ₹⊞	D DEFECT DESCRIPTION AVE DEFECT DESCRIPTION DEF SPA 또표 약 Additional Observations (m 양료	RAGE FECT ACING nm)
					4.50		Continuation of Sheet 1						
NMLC		93	93 (100) 90 (93)	4.5 5.0 5.5 5.5 6.0 6.5 7.0	92.44		BASALT, pale grey and orange, with diameter calcium amygdules, with iro	1-5mm HW n staining HW	v			4.65m: J, 45°, Un, Ro, Cn 5.95m: J, 25°, Un, Ro, Cn 6.05m: J, 0°, Un, Sm, Cn 6.14-7.05m: Set 1, J, 15-20°, sp=150mm, Pl, Sm, Sn, Iron staining, healed/cemented	
	Å 30%	89	78	7.5— 	7.40 89.54 7.60 89.34		NO CORE 7.40-7.60m BASALT, pale grey and orange, with diameter calcium amygdules, with iron	1-5mm HW n staining	V				

LIE RO DC DB	NT: JEC ⁻ ATIC NO:	T: DN:	ARI Pac Tint 066	JP ific Hiç enbar 22140	hway to Ew	COORDS: 552178 Upgrade SURFACE RL: 96 ingsdale INCLINATION: -9 HOLE DIA: 100/7	5.1 m F 5.94 m 0° 6 mm	E 68 DA HO	21040. TUM: LE DE	SHEET: 3 OF 4 2 m N 56 MGA94 DRILL RIG: Pioneer 120 AHD DRILLER: North Coast D LOGGED: AM DA PTH: 19.80 m CHECKED: CSC DA	rilling TE: 16/7/0 TE: 10/8/0
		Drilli	ng			Field Material Description		INF	FRRED	Defect Information	
WATER	TCR	RQD (SCR)	DEPTH (meters)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STF Is。 5000 日子	ENGTH ™Pa See ≥±≧≣	DEFECT DESCRIPTION & Additional Observations	AVERA DEFEC SPACIN (mm)
2006/20	83	(89) 72 (83)	8.0	0.15		BASALT, pale grey and orange, with 1-5mm diameter calcium amygdules, with iron staining	g HW	/		8.27m: J, 10°, Un, Sm, Cn 8.32m: J, 5°, Un, Sm, Cn	
NOF MI	100	100	9.5-	9.30 9.30 87.64		NO CORE 9.15-9.30m BASALT, pale grey and orange, with 1-5mm diameter calcium amygdules, with iron staining	g HV			9.88m: J, 0°, Pl, Ro, Cn	
	87	50 (75)	10.5	<u>11.00</u> <u>11.10</u> 85.84		NO CORE 11.0-11.10m BASALT, pale grey and brown, with 1-5mm diameter calcium amygdules, with trace iron	HW	7		11.27m: J, 35°, Pl, Sm, Cn	
1.0%	100	95 (100)	11.5-	12 20		staining				11.44m: J, 20°, Un, Ro, Cn 11.77m: J, 50°, PI, Sm, Cn 11.83m: J, 30°, PI, SI, Cn 11.98m: J, 0°, PI, Ro, Cn 12.04.12 17m: Set 1 _ L 0° sp=10-30mm. PI Ro, Cn	
<	100	93 (100)	12.5— 	84.74		BASALT, dark grey, with trace blue green calcite amygdules up to 10mm diameter	SW			12.76m: J, 12°, Pl, Ro, Cn 13.21m: J, 15°, Pl, Ro, Cn	
	100	100 (100)	14.0-							13.61m: J, 10°, Un, Ro, Cn 13.70m: J, 15°, Un, Sm, Cn 13.81m: J, 0°, PI, Ro, Sn 14.25m: J, 25°, PI, Sm, Cn 14.66m: J, 30°, Un, Sm, Cn	
	100	100	15.5-	- - - - - -						15.19m: J, 0°, Un, Ro, Cn 15.26m: J, 0°, Un, Sm, Cn 15.71m: J, 10°, PI, Sm, Cn	

SHEET: 4 OF 4

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 552178.1 m E 6821040.2 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 96.94 m DATUM: AHD INCLINATION: -90°

DRILLER: North Coast Drilling DATE: 16/7/07 LOGGED: AM DATE: 10/8/07

HOLE DIA: 100/76 mm HOLE DEPTH: 19.80 m

CHECKED: CSC

NH 60:F		[Drillir	ng			Field Material Description						Defect Information		_		
0/ 2:3			~					NG	1		ERRE	ED TH			AVE	ERA	GE
	L H		(SCR	H. (Si		HIC	ROCK / SOIL MATERIAL DESCRIPTION	THER	2	ls ₍₅₀ 3 – ∘)) MP	a			DE SP/	FEC	;T NG
	WATE	TCR	RQD	DEPT (mete	DEPTH RL	GRAF LOG		WEA'	Ē	ioi d	j-e ≥T;	≥≞ ≥≏	& Additional Observations	10	י) 100 130	2000	3000
IA-РН.(16.0-]		BASALT, dark grey, with trace blue green	SW	/-			Г	16.04m: J, 5°, Un, Sm, Cn	Π	Π		Π-
ца-0- -							calcite amygoules up to 10mm diameter	FF	2			L	10.22-51 J. 10° DI. 0-5. 0-5				-
GAPC				16.5 —	-							L	16.33m: J, 10 , PI, Sm, Cn				-
H.GP.]							L					-
1401			97	17 0 —								L	16.79m: J, 5°, PI, Sm, Cn 16.88m: J, 5°, PI, Sm, Cn				_
11/000		100	(100)			$\langle \vee \rangle$						L	16.94m: J, 10°, Un, Sm, Cn				-
87.0 GIL												L	17.34m: J, 10°, PI, Sm, Cn			h	-
				17.5-	-	$\langle \vee \rangle$						L					-
												L	17.81m: J, 10°, PI, Sm, Cn				
NN				18.0-		$\langle \cdot \rangle \rangle$						L					-
												L	18.17m: J, 0°, Un, Sm, Cn			ľ	-
- IELU /				18.5—	1							L	18.40m: J, 0°, Un, Sm, Cn		ľ	1	-
1000		100	97			$\langle \vee \rangle$						L					
			(100)	19.0 —								L					_
KKEU						$\langle \vee \vee \rangle$						L	19.15m: J, 10°, Un, Sm, Cn				-
				10 5	-							L	19.21m: J, 5°, Un, Sm, Vr, 2mm, Calcite				-
				19.5]	$\langle \vee \rangle$						L	19.60m: J, 45°, Un, Sm, Cn			ŕ	-
					19.80		END OF BOREHOLE @ 19.80 m						19.75m: J, 45°, Un, Sm, Cn	╫	H		<u> </u>
6622.14				20.0-			Plezometer installed										-
0\091-1																	
0LVC)				20.5-													-
1-100/:1																	-
HOLE				21.0—	-												-
BORE																	-
COKEL				21.5—													_
2.GLB					1												-
n-/n-/n				22 0													
3EL 20																	-
																	-
KEUB				22.5-	-												-
S ALIE																	-
J/ SKA				23.0-													-
.00.62					1												-
				23.5-]												-
ANE					1												-
	<u> </u>	L_	L	2 4 .0-	1_	L		\perp		\bot			l	∐.	\downarrow		
GAL				!	This geotech	report nical p	of borehole must be read in conjunction with acc urposes only, without attempt to assess possible	compa cont	any ami	ing inati	note ion.	s a An	nd abbreviations. It has been prepared for y references to potential contamination are for				-00-
						inform	nation only and do not necessarily indicate the pr	esen	ce c	or at	osen	ce	or soil or groundwater contamination. GAP	jiin I	. F I	IN. 1	RL2

LIE RO OC/ OB	NT: JECT ATIO NO:	-: N:	ARUP Pacific Tinten 06622	bar to 140	away Upgrade ⊳ Ewingsdale	COORDS: 55 SURFACE RL INCLINATION HOLE DIA: 11	2178.1 m E .: 96.94 m I: -90° 00/76 mm	6821040.2 m N DATUM: AHD HOLE DEPTH:	N 56 MGA94 19.80 m	SHEET: 4 DRILL RI DRILLER LOGGED CHECKE	1 OF 1 G: Pionee :: North Cc b: AM D: CSC	r 120 vast Drilling DATE: 16/7/ DATE: 10/8/
	Dri	lling			Field Material D	Description			Instrume	ntation Detai	ls	
WATER	DRILL FLUID	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ABBRE SOIL / ROCK MATE (Refer to Report of	EVIATED ERIAL DESCRIPTION Borehole For Details)						
		<u>р</u>	96.94	× •× × × • × •	Sandy SILT					,	Steel gati Cement	c cover
		2 -	-	× • × × × × •								
		4 -	<u>3.50</u> 93.44		BASALT		-					
			<u>4.50</u> 92.44 - -		BASALT						- Bentonite	cement grout mi
30%		6 -										
7/2007 A 3		8 -	89.34		NO CORE BASALT							
IK] 30/0	<u>-</u>	0 -	- <u>9.15</u> _ 87.64		NO CORE BASALT							
			<u>11.00</u> 85.84		NO CORE BASALT			11.10,	RL85.84			
Λ 10%		2 -	<u>12.20</u> 84.74		BASALT		-	13.00,	RL83.94		- Bentonite	granules
	1	4 -	_		·			13.80, 1	RL83.14		— Sand 2m	m graded
			-									
		ю -	-								— 3mm PV0	C screens
	1	8 -	-									
	2	0 -	- <u>19.80</u> 77.14				_	19.80, 1	RL77.14			

CLIENT: ARUP PROJECT: Pacific Highway Upgrade LOCATION: Tintenbar to Ewingsdale JOB NO: 06622140

COORDS: 552178.1 m E 6821040 m N 56 MGA94 SURFACE RL: 96.94 m DATUM: AHD INCLINATION: -90° HOLE DIA: 100 mm HOLE DEPTH: 12.00 m

SHEET: 1 OF 2 DRILL RIG: Pioneer 120 DRILLER: North Coast Drilling DATE: 16/7/07 LOGGED: AM CHECKED: CSC DATE: 10/8/07

		0	Drillir	ng		Sampling				Field Material Descr	ptio	n		
/09/2007 2:40:09 PM	PENETRATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
050 1				0.0	96.94			×	MI	Clayey Sandy SILT, medium plasticity, brown, fine to		1	RESIDUAL SOIL	<u> </u>
H.GD				-				×		medium grained sand				.
ETA-P				_]				ו						
9- 19- 19-				0.5				×						-
GAP6				-				× -						
GPJ				10_							-			
Hd Of				- 1.0				x -			2			.
62214				-				*. *						
NT/06			1	1.5-				× •						-
70 GI				-				×						
TA\78				-				×						-
YDA			2	2.0—	2.00 94.94			×		BASALT, highly weathered, inferred very low strength.		{	WEATHERED ROCK	-
ATOR				-				$\langle \vee \rangle$		orange mottled pale grey				-
ABOR				-				$\left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right]$						
DN DN			2	2.5-				$\langle \rangle \vee \rangle$						-
ELDA				-				۲ _` v						-
00 FII								$\langle \vee \rangle$						-
TE/70				3.0				$\left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right]$						-
ROU		L		-				$\langle \rangle \vee \rangle$						-
RED				35-				(ČV)						-
CEF EF				_				$\langle \vee \rangle$						
2E PF				-				$\left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right]$						-
T_ _			4	4.0-				$\langle \rangle \vee \rangle$						-
PO_AR				-				(vv)						-
62214				-				$\langle \vee \rangle$						
50\06			4	4.5-				$\left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right]$						-
1-101-10	j			-				k`v)						-
PROJ								(vv)						-
J:\06			5	5.0				$\langle \vee \rangle$						-
AGE				-										-
ULLF				5 5				k∿~\						-
LB F								$\langle \vee \rangle$						
7-02.0				-				(\vee)						-
0-200			6	6.0-				$\langle \cdot \rangle \langle \cdot \rangle$						-
SEL 2				-				kv∼\						-
DAT				-				$\langle \vee \rangle$						-
DΒY			6	6.5	6.50 90.44			$\langle \vee \rangle$		BASALT, highly weathered, inferred very low to low				-
TER				-				$\left[\begin{array}{c} & \\ & \\ & \end{array} \right]$		strength, pale grey				-
AS AI			.					k`v)						-
07 SR			7	-0.1				(vv)						-
25.06	1	м		-				$\langle \vee \rangle$						
NE .			-	7 5				$\left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right]$						
EW C			'					k∵v)						-
ETA				-				$\langle \mathbf{v}^{\vee} \rangle$						-
0-BI			_ _ŧ	8. 0 _	_[⊥_	ע⊻ע		L	L_]	L]_
GAP					r aeot	his report of borehol echnical purposes of	le m nlv.	ust be withou	read t atte	I in conjunction with accompanying notes and abbreviations. ampt to assess possible contamination. Any references to p	It h oten	as be tial co	en prepared for ontamination are for	
					310	information only	and	do no	t neo	cessarily indicate the presence or absence of soil or groundy	vater	cont	amination. GAP gINT FN. F0	1a

CLIENT: ARUP PROJECT: LOCATION: JOB NO:

Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 552178.1 m E 6821040 m N 56 MGA94 SURFACE RL: 96.94 m DATUM: AHD INCLINATION: -90° HOLE DIA: 100 mm HOLE DEPTH: 12.00 m

SHEET: 2 OF 2 DRILL RIG: Pioneer 120 DRILLER: North Coast Drilling DATE: 16/7/07 LOGGED: AM CHECKED: CSC DATE: 10/8/07

			Dri	lling		Sampling	Drilling Sampling Field Material Description				n		
09/2007 2:40:09 PM		PENEIRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
T 05/				8.0-				\sum	1	BASALT, highly weathered, inferred very low to low			WEATHERED ROCK
H.GD.				-				$\left(\bigvee \right)$		strength, pale grey			
TA-PI				-				$\langle \rangle \dot{\rangle}$					
0-BE				8.5-				$\langle \rangle \vee \rangle$]				-
SAP6				-				۲ _v v,					
L C			~	-				$\left(\bigvee \right)$					
DH.O			//200	9.0				$\left(\bigvee \right)$					-
22 140			22/08	-									
T\066			$\mathbf{\Sigma}$	0.5				$\langle \vee \rangle$]				
N GIN				9.5				$\langle \vee \rangle$					
4/787			71	-				$\left(\times \right)$					
DAT	2	м	//200	10.0-				$\left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right]$					-
ZORY			30/01	-]				
ORA				-				۲ _v v,					
0 LAB				- 10.5				(\vee)					-
DAN				-				$\left(\right) \right)$					
FIEL				-					j				
V7000				11.0—				$\langle \mathbf{v}^{\vee} \rangle$					-
BUT				-				$\langle \nabla \rangle$					
ED R				-				(\vee)					
ERR				11.5				$\left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right]$					-
PREF				-				$\langle \rangle \vee \rangle$]				
_12E				-	12 00			۲ [×] ×					
ARUP				12.0 -	84.94			1		END OF BOREHOLE @ 12.00 m			
140				-						Piezometer installed			
06623				125_						Note: borehole drilled for piezometer installation only			
1-150				12.5 -									
JU/10				-									
06PR(- 13.0—									-
л: Л				-									
PAG				-									
FULL				13.5—									-
GLB				-									
07-02				-									
2007-				14.0—									-
GEL				-									
Y DA1				-									
EDB				14.5									-
LTER				-									
RAS A				15.0									
07 SF													
25.06.				-									
NE				- 15.5									
				-									
TA P				-									
		_]		-] _	$ _ _ _ _ _ _ _ _$	L _			L	L _		L
GAP6					090	This report of borehole	e m	withou	read	I in conjunction with accompanying notes and abbreviations.	It h	as be	een prepared for
					300	information only	and	d do no	ot ne	cessarily indicate the presence or absence of soil or groundy	ater	cont	amination. GAP gINT FN. F01a RI 2

CLIENT: ARUP PROJECT: Pacific Highway Upgrade LOCATION: Tintenbar to Ewingsdale JOB NO: 06622140					COORDS: 552 SURFACE RL: INCLINATION: HOLE DIA: 10	SHEET: 1 OF 1COORDS: 552178.1 m E 6821040 m N 56 MGA94DRILL RIG: Pioneer 120SURFACE RL: 96.94 m DATUM: AHDDRILLER: North Coast DrillingINCLINATION: -90°LOGGED: AMDATE:HOLE DIA: 100 mm HOLE DEPTH: 12.00 mCHECKED: CSCDATE:					
1	Dri	lling	1	Field Materia	I Description	Instrume	ntation Details				
WATER	DRILL FLUID LEVELS	DEPTH (metres)	DEPTH RL	SOIL / ROCK MA	REVIATED TERIAL DESCRIPTION of Borehole For Details)						
ADT ADT 30/07/2007 (1/22/08/2007	2 2 1 1	$ \begin{bmatrix} 1 & - \\ 2 & - \\ 3 & - \\ 3 & - \\ 5 & - \\ 5 & - \\ 6 & - \\ 7 & - \\ 8 & - \\ 9 & - \\ 1 & - \\ 2 & - \\$	2.00 94.94 94.94 90.44	Stavely Clayey SIL x<		5.50, RL91.44	Cement Cement Cement Cement Cement Cement Cement Cement Cement Cement Cement Cement Cement Sant 2mm graded Cement grout mix Sant 2mm graded Cement Cement grout mix Cement grout grout mix Cement grout grout grout grout mix Cement grout				

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 552216.8 m E 6821076.9 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 88.99 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 3 DRILLER: North Coast Drilling DATE: 19/7/07 LOGGED: BC

HOLE DIA: 100/76 mm HOLE DEPTH: 15.40 m

DATE: 10/8/07 CHECKED: CSC

		Dri	lling		Sampling				Field Material Descr	iptio	n		
	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
ຊ 			0.0-	88.99		Т	×-	СН	Silty CLAY, high plasticity, red brown, some root fibres			RESIDUAL SOIL	_
9.			-	1			×		······································				
± 1-4			-	-			×						
出			0.5-	1			<u> </u>						-
ام م			-	1									
2			-	1			× ·						
e P.			10	1						Σ	5		1
H			1.0		SPT 1.00-1.45 m		<u>×</u> –				2		
ADT 4			-		5,0,12 N - 20		×						
1000			-	-			×	1					
Z			1.5-				×						-
8/0			-	-			×						
N N		5	-	1									
ň.		3/200	2.0—	2.00 86.99			*	СН	Silty CLAY high plasticity red brown and grey zones of			RESIDUAL SOIL TO EXTREMELY	-
5		52/08	-	1			×		iron staining, some rock structure evident			WEATHERED ROCK	
22	М-Н	Ξ	-	-			×						
₹	-		2.5-		SDT 2 50 2 05 m								-
ANI			-		4,4,6 N = 10		×						
Ē			-	-			×						
000			3.0-	1			×			∐ ⊿	ß		
		Σ	-	-			<u> </u>						
ĭ ĭ		/200	-				×						
L L		0/02	35										
Ľ		с С	5.5 -	-			<u> </u> ^						
2			-	1			×_						
			10	3.90 85.09		-	<u> </u>	<u> </u>	For Continuation Refer to Sheet 2				
T AKO			4.0	1									_
04 1 1			-										
77.00				-									
NUGL			4.5	1									-
-101			-	-									
<u>S</u>			-										
190			5.0-	1									-
, IJ			-	-									
4			-	1									
D.			5.5-										-
er E				-									
20-70			-	1									
-/ 002			6.0-	1									-
GEL.			-]									
DAIR			-	1									
β			6.5-	-									-
H H H H			-										
AL			-	-									
2KAC			7.0-	1									_
20.0			-										
70.02			-	-									
E E			75-	1									
A E A				-									
Z V			-	1									
		L	۔ مور							L.		L	
94			-0:0		This report of borehol	e m	nust be	read	I in conjunction with accompanying notes and abbreviations.	lt h	as be	een prepared for	
Ð				geo	technical purposes or	nly,	withou	t atte	empt to assess possible contamination. Any references to p	otent	ial co		12
					information only	and	u ao no	λ neo	cessarily indicate the presence of absence of soil of ground	vater	cont		١d

			Go SS 	ARU Pac Tint 066	JP ific Hig enbar 22140	hway to Ew	Upgrade ingsdale	COORDS: 552216 SURFACE RL: 88 INCLINATION: -90 HOLE DIA: 100/76	.8 m E .99 m)° 6 mm	∎ ⊑ 6 □		PC 076.9 JM: DEF	DRT 9 m N AHD PTH: 1	OF B 56 MGA 15.40 m	SHEE 94 DRILL DRILL LOGG CHEC	HOLI T: 2 O . RIG: P .ER: No .ED: BC .:KED: C	F 3 ioneer rth Coa : SC	120 ast Drilli DATE DATE	ng : 19 : 10	5 9/7/0 9/8/0	07 07
		0	Drillin	g			Fiel	d Material Description							D	efect Info	rmatior	n			
COTFIN	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MAT	ERIAL DESCRIPTION	WEATHERING	EL 0.03 _ S	NFERF TREN s(50) M 500 F	RED GTH IPa ₽ ±		DE & A	FECT DES	CRIPTION	l s		10 30 30	VERA DEFE PACI (mm	GE CT NG 0000 0000
		100	97 (100) 94 (100)	0.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 4.5 5.0 6.5 	<u>3.90</u> 85.09		Continuation of Sheet BASALT, grey, with tra trace brown iron staini	1 ace green amygdules, ng	SW				4.00m: 4.05-4. 4.41m: 4.52m: 5.12-5. 5.21m: 6.15m: 6.37m: 6.50-6. 6.75m: 6.90m: 7.15m:	: J, 20°, PI, J .06m: J, 30° : J, 0-20°, U : J, 0-10°, U : J, 5°, Un, S : J, 20°, PI, S : J, 20°, PI, S : J, 20°, PI, S : J, 15 and S : J, 15 and S : J, 15 and S : J, 0°, Un, S	Ro, Sn ⁶ , Pl, Ro, Sr n, Ro, Cn n, Ro, Cn Sm, Cn ⁷ , Un, Sm, V Sm, Vr, (blu ned Ro, Cn ⁶ , Un, Sm, G 35°, St, Sm n, Sm, Cn Sm, Vr, calo	n /r Je oxide) Cn , Cn cite					
					 This jeotechi	report		ad in conjunction with ac ttempt to assess possibl	 compa e conta		ng no	tes ar	7.48m: nd abbre y referer	: J, 0°, Un, F 	≺o, Cn — — — — thas been ential conta	 prepared f mination a	 for ire for				

C PI LO JO	CLIENT: ARUP PROJECT: Pacific Highway Upgrade LOCATION: Tintenbar to Ewingsdale JOB NO: 06622140						/ Upgrade vingsdale	REPORT OF BOREHOLE: BH200 SHEET: 3 OF 3 COORDS: 552216.8 m E 6821076.9 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 88.99 m DATUM: AHD DRILLER: North Cost Drilling INCLINATION: -90° LOGGED: BC DATE: 4 HOLE DIA: 100/76 mm HOLE DEPTH: 15.40 m CHECKED: CSC DATE: 4						ng 19/7 10/8	7/07 3/07	
			Drillir	ng			Fie	Id Material Description					Defect Informat	ion		
METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MA	ERIAL DESCRIPTION				DEFI & Ado		AVERAGE DEFECT SPACING (mm) 0000000000000000000000000000000000		
		100	100 (100) 100 (100) 100 (100)	8.5 9.0 9.5 10.0 10.5 11.0 11.5 11.0 11.5 12.0 13.5 14.0 14.5 15.0 15.0			BASALT, grey, with tr trace brown iron stain	ace green amygdules, ing	SW FR			8.64m: J, 0°, Un, Sr 9.36m: J, 0°, Un, Sr 9.64m: J, 0°, Un, Sr 9.86m: J, 0°, Un, Sr 9.86m: J, 0°, Un, Rc 10.08m: J, 5°, Pl, Si 10.80m: J, 5°, Pl, Si 11.61m: J, 5°, Pl, Si 12.19m: J, 0°, Un, F 12.78m: J, 10°, Pl, Si 13.31m: J, 0°, Un, S 14.12-14.14m: J, 30 14.21-14.23m: J, 40 14.31-14.38m: J, 60 14.57m: J, 20°, Un, 15.16m: J, 25°, Pl, Si	n, Cn n, Vr, (blue oxide) n, Cn o, Cn m, Vr, (blue oxide) , Sm, Cn m, Vr, (blue oxide) n, Vr, (blue oxide) Ro, Cn Sm, Vr, (blue oxide) Sm, Cn ^e , Pl, Sm, Ct, (blue oxide) Sm, Cn Sin, Cn Sm, Vr, (plue oxide) Sm, Vr, (plue oxide)	e 2mm) e) e oxide)		
I				15.5-	15.40	r,,	END OF BOREHOLE Piezometer installed	@ 15.40 m								
				!	This geotech	report nical p inform	of borehole must be re urposes only, without a nation only and do not r	ad in conjunction with ac ttempt to assess possibl necessarily indicate the p	compa e conta resenc	anying i aminati æ or at	notes a on. An osence	nd abbreviations. It h y references to poten of soil or groundwate	has been prepared for tial contamination are fo r contamination.	r GAP gl	NT FN	I. F02; RL:

CLIENT: ARUP PROJECT: Pacific Highway Upgrade LOCATION: Tintenbar to Ewingsdale JOB NO: 06622140				UP cific tent 5221	Highway Upgrade ar to Ewingsdale 40	SHEET: 1 OF 1 COORDS: 552216.8 m E 6821076.9 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 88.99 m DATUM: AHD DRILLER: North Coast D INCLINATION: -90° LOGGED: BC DA HOLE DIA: 100/76 mm HOLE DEPTH: 15.40 m CHECKED: CSC DA					
		Dri	ling			Field Materia	I Description			Instrume	entation Details
MEIHOU	WATER	DRILL FLUID LEVELS	DEPTH (metree)	DEF R	P <i>TH</i> L	ୁ ABB TT SOIL / ROCK MA ତୁ (Refer to Report	REVIATED TERIAL DESCRIPTION of Borehole For Details)				
			0	88.	.99	× ── Silty CLAY					Steel gatic cover Cement
				-	-	<u>× </u>					
			1 -			×					
	8/2007				-						
	<22/0		2 -	86.	.99 -	× - Silty CLAY		-			
	=			-		×					
	\ ∑		3 -	-		- <u> </u>					
	17/200					¥ x 1					
	30/0		4 -	85.	.09			-			
				-	ł	$\langle \cdot \rangle$					
			5 -	-		$\sum_{i=1}^{n}$					- Bentonite cement grout r
					ł	vy					
			6 -	4	ľ	$\langle \rangle \langle \rangle$					
				-	ł	v.					
			7 -	_	ł	$\langle \rangle \langle \rangle$					
				-	ľ	\sim					
			8 -	-	ł	\sim					
			•	-		$\langle \rangle \rangle$					
			0	-	k	$\langle \cdot \rangle$					
			9	-	ľ	$\langle \rangle \langle \rangle$					
			~	-	ł	v.			10.00. F	RL78.99	
		1	0 -	-	ł	$\langle \rangle \langle \rangle$					
				-	ł						Bentonite pellets
		1	1 -	-	ł				11.40, F	RL77.59	
						\sim					Sand 2mm graded
		1	2 ·		k	\sim			12.40. F	RL76.59	
]	ľ	XXX					
		1	3 -	-	ł	v.					
				-	<i>[</i>	$\langle \rangle \langle \rangle$					3mm PVC screen
		1	4 -	-	ľ	\sim					
				-	ł	$\langle \vee \rangle$					
		1	5 -	-	ľ	\times					
				<u> </u>	40 .59	×, /		-	<u> 15.40, F</u>	RL73.59	
		1	6 -	-							

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

Т

COORDS: 552217.5 m E 6821077.3 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 88.93 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 1 DRILLER: North Coast Drilling LOGGED: BC DATE: 20/7/07

HOLE DIA: 100 mm HOLE DEPTH: 3.50 m

CHECKED: CSC DATE: 13/8/07 Field Meterial Description

			Dri	lling		Sampling				Field Material Desci	iptio	n		
09/2007 2:42:52 PM	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
DT 05/				0.0	88.93		Τ	×-	СН	Silty CLAY, high plasticity, red brown		1	RESIDUAL SOIL	1
D-BETA-PH.GD		М		- - 0.5				× ;						-
BAP6_0				-										
GPJ 0				10-										
140 PH								<u> </u>						
06622				-				×;						
0 GINT			2007	1.5				× —	×					-
TA\787(ADT		22/08/2	-				×	<pre>V</pre>		P-D			
RY DA		м-н	Ř	2.0-				∗	•					-
DRATO				-				×						
D LAB(2.5-				×_						-
ELD AN				-				* -						
000 FIE				3.0-				×						_
DUTE/7			07 I 🛛	-				×,						
RED RC			//07/20	-	3.50				4					
REFER			30	-3.5	85.43					END OF BOREHOLE @ 3.50 m Piezometer installed				1-
T2E PF				_						Note: borehole drilled for piezometer installation only				
ARUP				4.0										-
22140_				-										
50\066				4.5-										-
J\101-1				-										
D6PRO				5.0-										_
GE J:V				-										
ULL PA				-										
GLB FI				5.5										
-07-02				-										
L 2007				6.0										-
DATGE				-										
ED BY				6.5										-
ALTER				-										
SRAS /				7.0-										-
.06.07				-										
NE_25				75										
NEW C														
BETA				-										
GAP6_0			I	8:0	geo	This report of boreho technical purposes c information only	le m nly, v and	ust be withou d do no	read tatte	I in conjunction with accompanying notes and abbreviations empt to assess possible contamination. Any references to p cessarily indicate the presence or absence of soil or ground	It h oten vate	as be tial co	en prepared for nontamination are for amination. GAP gINT FN. F0)1a

LIEN ROJ DCA DB N	IT: ECT TION	: N:	ARUP Pacific Tinten 06622	: High bar to 140	C way Upgrade S Ewingsdale IN H	OORDS: 5522 URFACE RL: ICLINATION: <u>OLE DIA: 10</u> (217.5 m E 6821077.3 m 88.93 m DATUM: AHI -90° <u>) mm HOLE DEPTH: 3</u>	N 56 MGA94 D 3.50 m	SHEET: 1 (DRILL RIG: 1 DRILLER: No LOGGED: B CHECKED: (DF 1 Pioneer 120 orth Coast Drilling C DATE: : CSC DATE:] 20/7/(13/8/(
	Dril	ling			Field Material Descript	ion		Instrumen	tation Details		
WATER	DRILL FLUID LEVELS	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ABBREVIATED SOIL / ROCK MATERIAL DI (Refer to Report of Borehole) ESCRIPTION & For Details)					
	0.	9——— - 5 —	88.93	×	Silty CLAY		0.05, 0.50,	RL88.43		iteel gatic cover	
	1.	0 —	-	×							
18/2007	1.	5 —	-								
IX 22/0	2.	- - - - -	-								
	2.	5 —	-	×					s s s s s s s s s s s s s s s s s s s	and 2mm graded	
30/07/2007 IA	3.	0 — · ·	85.43				3.50,	RL85.43	3	mm PVC screen	

. . .

CLIENT: PROJECT: LOCATION: JOB NO:

- ----

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 552261.3 m E 6821191.7 m N 56 MGA94 DRILL RIG: Tracked Scout SURFACE RL: 88.62 m DATUM: AHD TH: 11.60 m

SHEET: 1 OF 3 DRILLER: Drillsearch LOGGED: BC DATE: 28/7/07

CHECKED: CSC DATE: 13/8/07

HOLE DIA: 100/76 mm	HOLE DEPT
INCLINATION: -90°	

		Dri	ling		Sampling			_	Field Material Descr	ptio	n		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0-	88.62			×-	СН	Silty CLAY, high plasticity, red brown			RESIDUAL SOIL	Г
	м		0.5	0.80			×			Σ	St		-
ADT	M-H		1.0— - - 1.5—	87.82	SPT 1.00-1.40 m 6,20,20/100mm				BASALT, grey brown with red zones, very low strength, extremely to highly weathered, ironstaining along joints, 1-2mm diameter amygdules present.			WEATHERED ROCK	
	н	30/07/2007	2.0	240									
5		$\overline{\nabla}$	25-	86.22					For Continuation Refer to Sheet 2				Γ.
		22/08/2007	3.0										-
			3.5										-
			4.0										-
			4.5										
			5.0										
			5.5										
			6.0 - -										
			6.5										
			7.0										
			- 7.5 - -										
	┙ <u></u>	L	8:0	gec	This report of borehol technical purposes of information only	⊥ le m nly, v and	ust be withou d do no	reac	L and the companying notes and abbreviations. The conjunction with accompanying notes and abbreviations. The company of the contamination. Any references to processarily indicate the presence or absence of soil or groundw	⊥ ⊥ It h otent vater	as be ial co	L	_ 1a

) () F	CATION: 06622140						∕ Upgrade vingsdale	REPORT OF BOREHOLE: BH200 SHEET: 2 OF 3 COORDS: 552261.3 m E 6821191.7 m N 56 MGA94 DRILL RIG: Tracked Scout Jpgrade SURFACE RL: 88.62 m DATUM: AHD Inclination: -90° LOGGED: BC HOLE DIA: 100/76 mm HOLE DEPTH: 11.60 m CHECKED: CSC								
			Drillir	ıg			Fie	Id Material Description	1				Defect Information			
METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MA	TERIAL DESCRIPTION					DEFECT DESCRIPTION & Additional Observations	AVERAGE DEFECT SPACING (mm) 0000000000000000000000000000000000		
				0.5	<u>2.40</u> 86.22	~~~~	Continuation of Shee BASALT, grey with so	t 1 ome red iron stained veir	IS HW				2.40-2.50m: recovered as fragmented rock			
		100	84 (90)	2.5 3.0 	2.85		As above, trace brow	n iron stained veins					 2.47-2.50m: J, 40°, Un, Ro, Sn 2.49-2.56m: J, 60°, PI, Ro, Sn, iron 2.58m: J, 0°, PI, Ro, Sn, iron 2.63m: J, 5°, PI, Sm, Sn, iron 2.68-2.72m: DS, 15°, coarse subangular basalt grav 2.75-2.77m: J, 20°, PI, Ro, Sn 2.77m: J, 15°, Un, Ro, Sn, iron 2.81-2.83m: DS, 20°, fine to medium sized gravel 2.95m: J, 20°, PI, Ro, Sn, iron 3.12-3.17m: J, 70°, PI, Sm, Sn, blue oxide 3.72-3.75m: J, 30°, Un, Sm, Vr, calcite 4.10-4.12m: J, 30°, PI, Sm, Sn, blue oxide 4.47-4.50m: J, 40°, Un, Ro, Sn, blue oxide 4.60-4.64m: J, 30-50°, Un, Sm, Vr, blue oxide 4.95m: J, 30°, PI, Sm, Sn, blue oxide 5.37m: J, 10°, PI, Sm, Sn, blue oxide 			
		100	88 (100)	6.0 6.5 7.0 7.5 8.0			of bornholo must be a						 5.74-5.75m: J, 20°, Un, Sm, Sn, blue oxide 6.00m: J, 20°, Un, Ro, Cn 6.61m: J, 5°, Pl, Sm, Cn 6.91m: J, 15°, Pl, Sm, Sn, blue oxide 7.29-7.30m: J, 20°, Un, Sm, Sn, blue oxide 7.68m: J, 15°, Pl, Sm, Sn, blue oxide 7.86m: J, 15°, Pl, Sm, Sn, calcite 			

RL2

Golder

REPORT OF BOREHOLE: BH2007

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 552261.3 m E 6821191.7 m N 56 MGA94 DRILL RIG: Tracked Scout SURFACE RL: 88.62 m DATUM: AHD INCLINATION: -90°

SHEET: 3 OF 3 DRILLER: Drillsearch

LOGGED: BC	DATE:	28/7/07
CHECKED: CSC	DATE:	13/8/07

HOLE DIA: 100/76 mm HOLE DEPTH: 11.60 m

8 P M			-					Field Meterial Description						Defe et lufe mu etie u	
2:44:2	Т	Т	L	riiiir	ng			Field Material Description			INFI	ERRE	D	Defect Information	
T 05/09/2007		AIEK	CR	QD (SCR)	EPTH neters)	DEPTH	RAPHIC OG	ROCK / SOIL MATERIAL DESCRIPTION	VEATHERING	000		ENGT ₀₎ MPa	ГН Э Р	DEFECT DESCRIPTION & Additional Observations	AVERAGE DEFECT SPACING (mm)
U GD		3	Ĕ	Ŕ		RL	03		5		5_	'∑īŻ			31323
0 PH.GPJ GAP6_0-BETA-P		-			8.5	-		BASALT, grey with some red iron stained veins	SW	/				8.10-8.12m: J, 60°, Un, Ro, Vr, blue oxide 8.25-8.26m: J, 30°, Un, Ro, Sn, blue oxide 8.27-8.70m: J, 20-90°, Un, Ro, Sn, blue oxide 8.48m: J, 10°, Un, Ro, Cn 8.54m: J, 10°, Un, Ro, Cn 8.72-9.00m: J, 50-90°, Un, Ro, Sn 8.720m: J, 50-90°, Un, Ro, Sn	
.TA\7870 GINT\0662214(9.0— 9.5—	-								9.00m: J, 0°, Un, Ro, Cn 9.10m: J, 5°, Un, Ro, Cn 9.10m: J, 5°, Un, Ro, Cn	
AND LABORALORY DA			100	83 (100)	- - - - - -	10.00 78.62		iron stained vein content increasing	-					9.69m: J, 0°, Un, Sm, Cn 10.28m: J. 20°, Un, Ro, Cn	
UTE/7000 FIELD /					10.5— - -	-								10.74m: J, 5°, Un, Sm, Vr, blue oxide	
E PREFERRED RO					11.0— - - 11.5—									11.09-11.11m: J, 45°, Un, Sm, Sn, iron	
<u>–</u>	+	-			11.0	11.60	<u>k</u> 'v	END OF BOREHOLE @ 11.60 m		+			ł		
A_NEW ONE_25.06.07 SRAS ALTERED BY DATGEL 2007-07-02.GLB CORED BOREHOLE J/08PROA101-15006622140_ARUP					12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 1			Reached target depth Piezometer installed							
GAP0_U-DE				<u> </u>	1 6 .0	 This geotech	report nical p	of borehole must be read in conjunction with accourt urposes only, without attempt to assess possible		any	/ing iinat	notes	s a An	nd abbreviations. It has been prepared for y references to potential contamination are for	
							mon	auon only and do not necessarily indicate the pre	Senc	Je (Jia	DSGU	ue		RL2

		IT: ECT TIOI IO:	N:	/ - 	ARUP Pacific Tinten	: High bar to 140	COORDS: 55 way Upgrade SURFACE RI b Ewingsdale INCLINATION HOLE DIA: 1	2261.3 m E 6821191.7 m N 56 MGA94 .: 88.62 m DATUM: AHD 4: -90° 00/76 mm HOLE DEPTH: 11.60 m	SHEET: 1 4 DRILL RIG: DRILLER: LOGGED: CHECKED:	OF 1 : Tracked Scout Drillsearch BC DATE: : CSC DATE:	28/7/0 13/8/0
_		Dri	lling	,			Field Material Description	Instrumen	ntation Details		
	WATER	DRILL FLUID LEVELS	DEPTH	(metres)	DEPTH RL	GRAPHIC LOG	ABBREVIATED SOIL / ROCK MATERIAL DESCRIPTION (Refer to Report of Borehole For Details)				
			0		88.62	*	Silty CLAY			- Steel gatic cover Cement	
				-	0 80	×					
			1	_	87.82		BASALT				
				-							
	/2007		_	-		ĺ.v.v.					
	30/07/		2	-	2.40						
	071Å			-	86.22		BASALT				
	2/08/20		3	_							
	(N										
			4	_							
			т	_							
				_							
			5	_					•	- Bentonite cement gro	out mi
				_							
			6	_				6.10, RL82.52			
				_						Dankarita manulas	
				_						Bentonite granules	
			7	_				7.10, RL81.52	• • • •		
				-						- Sand 2mm graded	
			8	_				8.10, RL80.52			
				-							
			~	-							
			9	-							
				-							
		1	0	_						- 3mm PVC screen	
				-			•				
		1	1								
				_							
				_	<u>11.60</u> 77.02	k.Ľv.		_			
		1	2	_							
				_							

CLIENT: ARUP PROJECT: Pacific Highway Upgrade LOCATION: Tintenbar to Ewingsdale JOB NO: 06622140

COORDS: 552262.1 m E 6821190.6 m N 56 MGA94 DRILL RIG: Tracked Scout SURFACE RL: 88.58 m DATUM: AHD INCLINATION: -90° HOLE DIA: 100/76 mm HOLE DEPTH: 5.00 m

SHEET: 1 OF 2 DRILLER: Drillsearch

LOGGED: BC DATE: 27/7/07 CHECKED: CSC DATE: 13/8/07

			Dril	ling		Sampling			Field Material Description												
09/2007 2:45:43 PM	METHOD PENETRATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS								
105/				0.0-	88.58			×	СН	Silty CLAY, high plasticity, red brown			RESIDUAL SOIL	Γ							
GAP6_0-BE1A-PH.GI	N	и		- - - 0.5 - -					•		≥			-							
GPJ			2007	10-	1.00			=	<												
V06622140 PH	ADT		IK 22/08/		87.58					BASALT, grey brown and red, very low to low strength, extremely to highly weathered			WEATHERED ROCK								
1A/7870 GIN		-		1.5 - -										-							
				2.0										-							
	+		907 K	-2.5	2.50 86.08		-		-	For Continuation Refer to Sheet 2				-							
ELD AN			0/07/2	-																	
OUTE/7000 FIE			õ	3.0— -										-							
PREFERRED R				3.5										-							
40_ARUP_12E				4.0										-							
01-150\066221				- 4.5— -										-							
JE JEVORPROJV				- 5.0										-							
GLB FULL PAG				- 5.5 -										-							
3EL 2007-07-02				6.0—										-							
ERED BY DATO				- 6.5										-							
6.07 SKAS ALI				- - 7.0										-							
EIA_NEW ONE_25.0				- 7.5— - -										-							
ä-				-8:0	l _l		⊥_		.	L	L_		L]_							
GAP					geot	his report of boreho technical purposes o information only	le m nly, v and	iust be withou d do no	reac it atte ot nee	I in conjunction with accompanying notes and abbreviations empt to assess possible contamination. Any references to p cessarily indicate the presence or absence of soil or ground-	It h oten vate	as be tial co r cont	en prepared for ontamination are for amination. GAP gINT FN. FC)1a							

			Go	olde oci	er ates	•				RE	PC	ORT OF BOREHOLE: BH200 SHEET: 2 OF 2	8		
) 	CLIEN PROJ LOCA JOB N	NT: IECT ATIO NO:	-: N:	ARU Pac Tint 066	JP ific Hig enbar 22140	jhway to Ew	V Upgrade COORDS: 552262. V Upgrade SURFACE RL: 88. Vingsdale INCLINATION: -90 HOLE DIA: 100/76	1 m E 58 m , mm		6821 Dati	190.0 UM: E DEI	6 m N 56 MGA94 DRILL RIG: Tracked Scout AHD DRILLER: Drillsearch LOGGED: BC DATE: 2 PTH: 5.00 m CHECKED: CSC DATE: 7	27/7 13/8	'/07 3/07	7 7
		[Drillir	ng			Field Material Description					Defect Information		_	
	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	EL 0.03 CO -		RED NGTH MPa - m P : I J H	DEFECT DESCRIPTION & Additional Observations 우	AVEF DEF SPA((m	RAGE ECT CINC Im)	E 000g
				0.5 	2.50		Continuation of Sheet 1								
		100	84 (95)	3.0 	5.00			SW				2.60m: J, 20°, PI, Ro, Sn, iron stained 2.62m: J, 25°, PI, Ro, Sn, iron stained 2.83m: J, 10°, PI, Sn, Sn, iron stained 2.83m: J, 10°, Un, Sm, Sn, iron stained 2.86m: J, 10°, Un, Sm, Sn, iron stained 2.91m: J, 15°, Un, Ro, Sn, iron stained 3.54m: J, 30°, Un, Sm, Sn, blue oxide 3.80m: J, 20°, PI, Sm, Cn 4.52m: 40°, Un, Sm, Vr, blue oxide 4.83m: J, 15°, Un, Sm, Cn			
				5.5 5.5 6.0 - - - - - - - - - - - - -			END OF BOREHOLE @ 5.00 m Reached target depth Piezometer installed Note: borehole drilled for piezometer installation only								
				9	i nis geotech	nical p inform	urposes only, without attempt to assess possible nation only and do not necessarily indicate the pro	conta conta esenc	ami ami ce c	ng no natio or abs	n. Angence	y references to potential contamination are for of soil or groundwater contamination. GAP gIN	ſ FN	l. FC F)2a RL2

LIEN ROJ DCA		: N:	ARUP Pacific Tinten 06622	c Highw bar to E	ay Upgrade Ewingsdale	COORDS: 5522 SURFACE RL: INCLINATION: HOLE DIA: 100	262.1 m E 6821190.6 m N 88.58 m DATUM: AHD -90°)/76 mm HOLE DEPTH:	56 MGA94	SHEET: 1 OF DRILL RIG: Tra DRILLER: Drills LOGGED: BC CHECKED: CS	1 icked Scout search DATE: 27/7/0 C DATE: 13/8/0
	Dri	ling	1		Field Material Des	cription		Instrument	ation Details	
WATER	DRILL FLUID LEVELS	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ABBREVI SOIL / ROCK MATERI (Refer to Report of Bor	ATED AL DESCRIPTION ehole For Details)				
IX22/08/2007	0,	5 – 5 – 5 –	88.58 		Silty CLAY BASALT		1.00, F 1.50, F	RL87.58	- Beni	I gatic cover ient conite cement grout mix
30/07/2007 IX	2.	0 -			BASALT		<u>2.00, F</u>	RL86.58	San	d 2mm graded
	3. 4. 4.	5 -							3mn	n PVC screen
	5.	0	- 5.00 83.58 - -				<u>5.00,</u> F	RL83.58		

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 552966.8 m E 6828454.4 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 94.30 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 5 DRILLER: North Coast Drilling DATE: 13/7/07 LOGGED: AM

HOLE DIA: 100/76 mm HOLE DEPTH: 30.30 m

CHECKED: CSC DATE: 13/8/07

		Dril	lling		Sampling				Field Material Descr	iptio	n		
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0	94.30			×	MI	Sandy Clayey SILT, medium plasticity, red, medium			RESIDUAL SOIL	
			-				× ×						
			0.5										-
ADT			-				x x			L			
0 PH.G			1.0	93.30	SPT 1.00-1.45 m		× ×	мн	As above, high plasticity	 ₩	VSt		-
+1 7700r			-		5,7,10 11 - 17		* 						
			1.5				× *						-
1/9//H			-				* X						
			2.0-	2.00 92.30			$\overline{\mathbf{X}}$		BASALT, grey and orange, extremely low strength,			EXTREMELY WEATHERED ROCK	
			-						extremely to highly weathered				
			2.5-		SPT 2.50-2.95 m								-
LIELU /			-		6,5,9 N = 14		$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						
EVVOO			3.0-				$\begin{pmatrix} \mathbf{v} \\ \mathbf{v} \end{pmatrix}$						-
I NON I			-										
			3.5-										-
			-										
			4.0-		SPT 4.00-4.45 m								-
2140 A			-		7,7,7 N = 14								
			4.5-										-
1-1.01/0			-										
NOFRC			- 5.0—										-
AGE J			-										
LULL			- 5.5—	5.50 88.80	SPT 5.50-5.95 m				red. with trace calcite amyodules				-
UZ.GLB			-		2,3,5 N = 8		$\langle \mathbf{v} \mathbf{v} \rangle$						
-/0-/00:			6.0-										-
			-										
			- 6.5—										-
			-										
OKAO A			- 7.0—		SDT 7 00 7 20 m								-
20.00.0			-	7.30	12,20/140 N = HB		$\langle \mathbf{v} \mathbf{v} \rangle$						
			7.5-	87.00					For Continuation Refer to Sheet 2				-
NEW			-										
0-861.4			- - -8:0]					L	
D-ND			-	geo	This report of borehol technical purposes or information only	e m nly, and	iust be withou d do no	e read ut atte ot ne	in conjunction with accompanying notes and abbreviations. mpt to assess possible contamination. Any references to p ressarily indicate the presence or absence of soil or groundw	It h oten vater	as be ial co cont	een prepared for ontamination are for amination. GAP gINT FN. Fi)1a รา 2

Â		G	olde OCi	er ates	5				REP	PORT	OF B	OREHOL	E: BH2	2009	
CLIE PRO LOC/ JOB	NT: JECT ATIO NO:	Г: N:	ARU Pac Tint 066	JP ific Hig enbar 22140	lhway to Ew	r Upgrade ringsdale	COORDS: 5529 SURFACE RL: INCLINATION: HOLE DIA: 100	966.8 m E 94.30 m -90° 0/76 mm	E 682845 DATUM HOLE D	4.4 m N 1: AHD DEPTH:	56 MGA9 30.30 m	4 DRILL RIG: F DRILLER: No LOGGED: AN CHECKED: (Pioneer 120 orth Coast Dr M DAT CSC DAT	rilling FE: 13/ FE: 13/	/7/07 /8/07
	ļ	Drillir	ng			Fie	Id Material Descript	tion				Defect Info	ormation		
WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MAT	TERIAL DESCRIPTIC	WEATHERING	INFERREI STRENGT Is ₍₅₀₎ MPa ^{80.0} 00000000 ゴブニュミュジ	D H 4 E H	DEF & Ad	ECT DESCRIPTIO ditional Observation	N	AVI DE SP (0.000	ERAGE EFECT ACING mm)
NMLC 5090% 40%			0.5 1.0 1.0 1.5 2.0 	7.30 87.00 7.70 86.60 8.00		Continuation of Sheet BASALT, dark grey, w calcite amygdules BASALT, orange and calcite amygdules, wit	1 vith trace 1-2mm diar th iron staining	neter FR meter HW		7.68m	n: J, 15°, Un, F '.94m: core re	Ro, Sn, iron staining	g Inted rock		
			ç	This geotech	report nical p inform	of borehole must be re urposes only, without a lation only and do not r	ad in conjunction with ttempt to assess pos necessarily indicate th	h accompa ssible conta ne presenc	nying notes amination. / e or absend	s and abbi Any refere ce of soil o	reviations. It l ences to poter or groundwate	nas been prepared itial contamination r contamination.	for are for GAF	^{>} gINT F	N. F02a RL2

CLIEI PRO OCA	NT: JECT ATIOI NO:	: N:	ARI Pac Tint 066	JP :ific Hiç :enbar 22140	jhway to Ew	COORDS: 552966.8 Upgrade SURFACE RL: 94.3 vingsdale INCLINATION: -90° HOLE DIA: 100/76	m E 0 m mm	E 68 DA HC	828 AT	8454. UM: E DE	A m N 56 MGA94 DRILL RIG: Pioneer 120 AHD DRILLER: North Coast Drillin LOGGED: AM DATE: PTH: 30.30 m CHECKED: CSC DATE:	ıg 13/7/ 13/8/
		Drillir	ng	L		Field Material Description	1	1			Defect Information	
WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INF STF Is 000 I		RED NGTH MPa ⊢∞₽ :±₹∃	DEFECT DESCRIPTION & Additional Observations	AVER4 DEFE SPAC9 (mr
	83	24 (24)	8.0	86.30 8.70 85.60		BASALT, dark brown to grey, with trace 1-2mm calcite amygdules NO CORE 8.70-9.00m	EW				8.04-8.70m: Set 1, J, 20°, sp=50mm, Un, Ro, Cn 8.22-8.39m: J, 80-90°, Un, Ro, Cn	
	57	47 (47)	9.0	<u>9.00</u> 85.30 <u>9.85</u> 84.45		BASALT, orange and grey brown with 2mm diameter calcite amygdules, with iron staining NO CORE 9.85-10.60m	EW				9.00-9.85m: cemented sub-vertical joint 9.80-9.84m: core damaged in barrel grippers	
%de	86	81 (81)	10.5-	10.60 83.70 10.80 83.50 11.10 83.20		BASALT, orange and grey brown with some 2mm diameter calcite amygdules, with iron staining Amygdaloidal BASALT, brown and orange, 2-5mm diameter calcite amygdules, with iron staining	EW	*			10.70m: J, 5°, PI, Ro, Cn 10.70-11.20m: core recovered as fragmented rock 10.75m: J, 35°, Un, Ro, Cn 10.90m: J, 50°, Un, Ro, Cn 11.12m: J, 20°, PI, Ro, Cn	
	100 100	88 (88) 89 (100) 52	11.5-			BASALT, orange and grey brown with trace 2mm diameter calcite amygdules, with iron staining					11.13/11.3, 3 , 5 , 01, Ro, Ch 11.49m: J, 5°, PI, Ro, Cn 11.68-12.07m: Set 1, J, 5-10°, sp=100mm, PI, Ro, Cn 12.05-12.30m: core recovered as fragmented rock	
50%	86	(89) 36 (41)	12.5— 	<u>12.30</u> <u>12.45</u> 81.85 <u>13.10</u> 81.20		NO CORE 12.30-12.45m BASALT, orange and grey brown with some 2mm diameter calcite amygdules, with iron staining BASALT, dark grey with zones of orange	HW				12.20m: J, 0°, PI, Ro, Cn 12.57m: J, 0°, Un, Ro, Cn 12.71m: J, 40°, PI, Ro, Cn 12.81m: J, 0°, Un, Sm, Cn 12.85-13.13m: Set 1, J, 20°, sp=30mm, Un, Sm, Cn 13.13-13.40m: J, 80°, PI, Ro, Cn	
	100	64 (82)	13.5—			uruwn, neavily irun staineo dasait					13.45m: J, 10°, Un, Sm, Sn, iron staining 13.52m: J, 20°, Un, Sm, Sn, iron staining 13.58m: J, 25°, Un, Sm, Sn, iron staining 13.69m: J, 19°, Un, Sm, Cn, iron staining 13.75m: J, 0°, Un, Sm, Cn, iron staining 13.86-13.93m: core recovered as fragmented rock 14.08m: J, 55°, Un, Ro, Cn 14.13m: J, 10°, Un, Ro, Cn 14.36m: J, 10°, PI, Ro, Cn	
	94	44 (63)	14.5— 								14.40m: J, 45°, PI, Ro, Cn 14.40-14.50m: core recovered as fragmented rock 14.59m: J, 40°, Un, Ro, Cn 14.68m: J, 60°, Un, Ro, Cn 14.82m: J, 5°, PI, Ro, Cn 14.92m: J, 20°, PI, Sm, Sn, slight iron staining 15.06m: J, 45°, PI, Ro, Cn 15.06m: J, 30°, PI, Sm, Cn 15.36m: J, 30°, PI, Sm, Cn 15.42m: J, 15°, PI, Sm, Cn 15.71m: J, 5°, PI, Ro, Cn	

CLI PR LO JOI	EN OJE CAT B N	T: ECT: FION O:	1:	ARU Pac Tint 066	JP ific Hig enbar 22140	hway to Ew	COORDS: 552966.8 Upgrade SURFACE RL: 94.3 vingsdale INCLINATION: -90° HOLE DIA: 100/76	m E 0 m mm	68 D/ HC	328 ATL DLE	454.4 JM: E DEI	4 m N 56 MGA94 AHD PTH: 30.30 m	DRILL RIG: Pioneer 120 DRILLER: North Coast [LOGGED: AM DA CHECKED: CSC DA	Drilling \TE: 13/7/07 \TE: 13/8/07
		D	rillin	g			Field Material Description						Defect Information	
METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	EL 0:03 VL 0:03 VL 0:03		RED IGTH ⁄IPa -∞₽ ±₹⊞	DEFE & Addi	CT DESCRIPTION tional Observations	AVERAGE DEFECT SPACING (mm) 0000000000000000000000000000000000
-	1×22/08/2000	70	0 (50) 50 (65)	16.0— - - 16.5— - - 17.0— - - - - - - - - - - - - - - - - - - -	<u>16.10</u> 78.20 <u>16.50</u> 77.80 <u>17.00</u> 77.30		NO CORE 16.00-16.10m BASALT, dark grey and orange brown, heavily iron stained zones As above, grey brown and orange	HW SW HW	-			16.21m: J, 0°, St, Ro 16.25m: J, 15°, Un, F 16.39m: J, 10°, Pl, Sr 16.51m: J, 5°, Pl, Ro, 16.56m: J, 5°, Un, Ro 16.94m: J, 20°, Un, S	, Cn to, Sn, slight iron staining n, Cn Cn o, Cn	
-	30/07/20004K	80	37 (43)	17.5 	17.60 76.70		BASALT, orange and pale grey, heavily iron stained zones	HW				17.96-18.08m: core n 18.12-18.55m: Set 1, Cn 18.30m: J, 65°, Un, F 18.40-18.53m: J, 80° 18.43m: J, 50°, Un, S	ecovered as fragmented rock J, 15°, sp=100mm, Un-St, Ro Ro, Sn, iron staining , Un, Ro, Sn, iron staining Sm, Sn, iron staining	
2		100	42 (58)		75.50		BASALT, red, with 2-10mm calcite amygdules	MW				18.94m: J, 20°, Un, S 19.03-19.33m: Set 1, 19.44-19.74m: Set 1, 19.84m: J, 65°, Pl, R	ecovered as tragmented rock Sm, Cn J, 0°, sp=90mm, Un, Ro, Cn J, 0°, sp=30mm, Un, Ro, Cn p, Cn	
NMLC	200	86	18 (36)	20.0— - - 20.5— - - 21.0—	74.30 20.20 74.10		NO CORE 20.00-20.20m BASALT, grey, with trace iron staining, with some vesicles and 2-5mm calcite amygdules	MW	-			19.93m: J, 40°, Un, F 20.20-20.71m: Set 1, possible drilling break 20.85-21.03m: Set 1, 21 10-21 23m: Set 1	ko, Cn J, 0-10°, sp=20mm, Un, Ro, C s J, 35°, sp=40mm, Un, Sm, Cn	n,
	-	100	30 (70)	- - 21.5— - - -						•		21.35-21.38m: J, 0°, 21.38m: Jx2, 30°, Pl, 21.44m: J, 0°, Pl, Sm 21.50m: J, 0°, Un, Rc 21.65m: J, 15°, Un, S	PI, Sm, Ct, clay, 3mm Sm, Ct, clay, 2mm I, Cn Sm, Sn, slight iron staining	
-	940L	100	73 (90)	22.0— 	<u>22.70</u> 71.60		BASALT, dark grey	FR	-			22.03m: J, 45°, PI, Sr 22.03m: J, 45°, PI, Sr 22.15m: Jx2, 30°, PI, 22.48m: J, 5°, Un, Sr 22.52m: J, 50°, PI, Sr 22.52-22.57m: core n 23.11m: J, 10°, PI, Sr 23.22m: J, 0°, Un, Sr	n, Sn, iron staining Ro, Sn, iron staining n, Sn, slight iron staining m, Sn, iron staining ecovered as fragmented rock n, Cn n, Cn	

CL PR LO JO		T: ECT TIOI O:	N:	ARI Pac Tint 066	UP cific Hig tenbar 522140	ghway to Ew	/ Upgrade ringsdale	COORDS: 552966 SURFACE RL: 94 INCLINATION: -9 HOLE DIA: 100/70	6.8 m E I.30 m 0° 6 mm	E 68 D/ HC	28454. ATUM: DLE DE	SHEET: 5 OF 5 4 m N 56 MGA94 DRILL RIG: Pioneer 120 AHD DRILLER: North Coast D LOGGED: AM DA PTH: 30.30 m CHECKED: CSC DA)rilling .TE: 13/ .TE: 13/	'7/0 '8/0
			Drillir	ng			Fi	eld Material Description	ו	INF	ERRED	Defect Information		
METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MA	TERIAL DESCRIPTION	WEATHERING	EL 0103 0103	RENGTH ₅₀, MPa ;;;, ~ ~ ~ ~ ;;; ~ ~ ~ ~ ~ , ≥ ∓ ≯ ∄	DEFECT DESCRIPTION & Additional Observations	AVE DE SP4 (r	ERAG
		100	100 (100)	24.5 225.0 25.0			BASALT, dark grey		FR			24.72m: J, 5°, PI, Sm, Cn 24.88m: J, 5°, PI, Sm, Cn 24.90m: J, 0°, Un, Sm, Cn		
NMLC		100	100 (100)	25.5— - 26.0—								25.74m: J, 5°, St, Sm, Cn 26.24m: J, 5°, Pl, Sm, Cn		
		100	100 (100)	26.5 27.0 27.5 28.0 28.5	28.10 66.20 28.30 66.00		Vescular BASALT, da vesicles red and grey, with gre	ark grey, 1-15mm diamet een calcite amygdules	er SW	-	•	26.44m: J, 0°, PI, Sm, Cn 26.69m: J, 5°, PI, Sm, Cn 26.95m: J, 0°, PI, Sm, Cn 27.10m: J, 5°, St, Sm, Cn 27.36m: J, 70°, PI, Sm, Cn 27.66m: J, 25°, PI, Sm, Cn 27.90m: J, 10°, PI, Ro, Cn 28.12m: J, 0°, PI, Ro, Cn 28.30m: J, 40°, Un, Ro, Cn 28.30-28.60m: core recovered as fragmented rock 28.42m: J, 10°, Un, Ro, Cn 28.60m: J, 25°, Un, Ro, Cn		
		100	100 (100)	29.0— 29.5— 30.0—	28.90 65.40 		BASALT, dark grey, v 2-5mm calcite amygo lenses/layers)	with 1-10mm vesicles, an Jules (concentrated in	Id SW			28.84m: J, 15°, PI, Ro, Cn 29.18m: J, 5°, St, Ro, Cn 29.28m: J, 15°, PI, Ro, Cn 29.52m: J, 35°, PI, Sm, Cn 29.63m: J, 45°, St, Sm, Cn 30.08m: J, 10°, PI, Sm, Cn		
				30.5— 31.0—			Piezometer installed	<u>- ພູ</u> ວບ.ວບ m						
				31.5-	-									

CLIE PRO .OC/ OB	NT: JECT ATIO NO:	Г: N:	ARUP Pacific Tinten 06622	bar to 140	way Upgrade 9 Ewingsdale	COORDS: 552 SURFACE RL: INCLINATION: HOLE DIA: 10	966.8 m E 94.30 m -90° 0/76 mm	6828454.4 n DATUM: AF HOLE DEPT	n N 56 MGA9 ID H: 30.30 m	04 DRILL RI DRILLER LOGGED CHECKE	G: Pioneer : North Co : AM D: CSC	[.] 120 ast Drilling DATE: 13/7/(DATE: 13/8/(
	Dr	illing			Field Material Descr	ription			Instrume	entation Detai	ls	
WATER	DRILL FLUID	DEPTH (metree)	DEPTH RL	GRAPHIC LOG	ABBREVIAT SOIL / ROCK MATERIAL (Refer to Report of Borel	ED DESCRIPTION hole For Details)					- Steel gati	- cover
_		2 -	- <u>1.00</u> 93.30 - <u>2.00</u> - 92.30		Clayey SILT		-				Cement	
		4 -	-									
50900 K40%		6 - 8 -	- 7.30		BASALT BASALT							
24		10 -	85.30 9.85 84.45 10.60		NO CORE BASALT NO CORE BASALT						— Bentonite	cement grout mix
▲ 50% ∰		12 -	- ^{83.20} - <u>12.30</u> - <u>13.10</u> - ^{81.20}		BASALT BASALT NO CORE BASALT BASALT	/ /						
1008/2007	1	16 -	- - - - - - - - - - - - - - - - - - -									
107/2003114 IK		18 -	- <u>17.60</u> - <u>17.60</u> - <u>18.80</u> - <u>75.50</u>		BASALT NO CORE BASALT BASALT		-					
eppeo		20 -			BASALT BASALT			21.0	0, RL73.30			
10%		24 -	- <u>22.70</u> - 71.60 -		BASALT						— Bentonite	granules
	:	26 -						<u>25.3</u> 27.3	0, RL69.00		— Sand 2mr	n graded
		28 - 30 -	28.10 66.20 28.90 65.40		BASALT		-	20.2	0. RI 64 00		— 3mm PVC) screen
		32 -	- 64.00 - -					30.3	U, NLU4.UU	<u> </u>		

CLENT: ARUP PROJECT Padife Highway Upgrade LOCATION: Tintenbar to Ewingsdale UOB NO: 06622140 CORDS: 55296.8 mE 6828454.4 m N 56 MGA94 SURRACE II. 94.30 m DATE: 137 HOLE DIA: 100/76 mm. HOLE DEPTH: 30.30 m CHECKED. CSC DATE: 137 CHECKED. CSC DATE: 137	Golder	REPORT OF	SHEET: 3 OF 4
BH2009 BOO-2500 BOX 3 OF 4 20 20	CLIENT:ARUPPROJECT:Pacific Highway UpgradeLOCATION:Tintenbar to EwingsdaleJOB NO:06622140	COORDS: 552966.8 m E 6828454.4 m N 56 MGA94 SURFACE RL: 94.30 m DATUM: AHD INCLINATION: -90° HOLE DIA: 100/76 mm HOLE DEPTH: 30.30 m	DRILL RIG: Pioneer 120 DRILLER: North Coast Drilling LOGGED: AM DATE: 13/7/07 CHECKED: CSC DATE: 13/8/07
		BH2009 900-2500 BOX 30F 4	6622140 INTENBAR TO WINGSDALE

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 552967.2 m E 6828452.3 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 94.01 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 2 DRILLER: North Coast Drilling LOGGED: BC DATE: 18/7/07

HOLE DIA: 100 mm HOLE DEPTH: 12.10 m

CHECKED: CSC DATE: 13/8/07

			Dril	ling		Sampling	_			Field Material Descri	ptio	n		
(09/2007 2:49:49 PM	MEIHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
L 05/				0.0-	94.01			×	СН	Silty CLAY, high plasticity, red brown			RESIDUAL SOIL	1
I.GDJ				-										
H-F				-				×						
BEI		L-M		0.5-				×						-
P6_0				-				<u> </u>						
G G				-										
H.GP	┝			1.0-	1.00			×	мц	Clavey SILT, high plasticity, red brown				-
140 P				-				× .		Clayey GLET, high plasticity, red blown			WEATHERED ROCK	
6622				-				× ·						
NT/0				1.5-				× ·						-
70 G				-				× _						
TA\78				-				x						
ΥDA				2.0-	-			×						-
VTOR				-										
80RA				-				×						
Ρ				2.5-										-
D AN				-				× ×						
FIEL				-										
2000				3.0-				×						-
UTE				-				×						
DRC				-				×						
ERRE				3.5-										-
REFE				-				<u>×</u>						
L2E P				-				×						
an s	MB			4.0-										-
0_AR				-				<u>×</u>						
2214		м		-										
0/066				4.5-				Ĵ_x.						-
01-15				-										
SOJ1				-				×						
06PF				5.0-										-
÷ щ				-				× ·						
PAG				-				×						
FULL				5.5-				× .						-
GLB				-				× ·						
02-02				-				×						
-2003				6.0-				×						-
SEL 2				-				×						
DATO				-				× ·						
DΒY				6.5-				×						-
ERE				-										
S ALT				_				×						
SRA				7.0-	-			×						-
06.07				-										
				-				×						
/ ONE	┝			7.5—				<u> </u>						-
NEV		н		-	1			×						
ETA	ł	M-H		-					1					
9			L _	8:0] _ [1_	<u> </u>	1	L	L _	J	L	1 –
GAP					deo	I his report of borehole technical purposes or	e m hlv	withou	read	t in conjunction with accompanying notes and abbreviations.	It h	as be jal co	een prepared tor ontamination are for	
					300	information only	and	d do no	ot ne	cessarily indicate the presence or absence of soil or groundw	/ater	cont	amination. GAP gINT FN. F0)1a

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 552967.2 m E 6828452.3 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 94.01 m DATUM: AHD INCLINATION: -90°

SHEET: 2 OF 2 DRILLER: North Coast Drilling DATE: 18/7/07 LOGGED: BC CHECKED: CSC DATE: 13/8/07

HOLE DIA: 100 mm HOLE DEPTH: 12.10 m

		Dri	lling		Sampling				Field Material Desc	riptio	n	
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
1 05			8.0-]			×	мн	Clayey SILT, high plasticity, red brown			RESIDUAL SOIL TO EXTREMELY
-GD			-				×					WEATHERED ROCK
H-A-			-				x					
-BET			8.5-	-			× ·					
P6_0			-				× _					
GA B			-	-			× ·					-
I.GP.			9.0-				×					
심			-	-				1				-
32214			-				×					-
T/066			0.5				×					-
N D			9.5-									-
7870			-				×					-
ATA			-	-			<u> </u>	1				-
NB Z	М-Н		10.0-	1								
\$ATO			-	-			×					-
ABOF		007	-	1			Ļ×.	1				-
2 9		08/2	10.5-				Ĵ	1				-
P		725	-									-
Ē		≚	-				Ê×	1				-
2000			11.0—	-			<u> </u>					-
UTE			-				<u> </u>	1				-
80			-	-			×					-
RREL			- 11.5	1				1				
			-	-			×	1				-
Ш			-	1								-
- T2			12.0				×					-
ARU	_		12.0-	12.10 81.01		_	<u>× </u>	1				·
140			-	01.31					Piezometer installed			-
6622				-					Note: borehole drilled for piezometer installation only			-
150\0			12.5									-
101-			-	-								-
ROJ			-	1								
006P			13.0—	-								-
с Ц			-									-
PAG			-									
FULL			13.5-									_
ЗГВ			-									-
7-02.0			-	-								-
.0-20				1								
EL 20			-									-
ATG			-									-
BYD			- 14 5									
RED			-	-								-
			-									-
AS P			-	-								-
17 SF			15.0	1								-
5.06.0			-									-
E_2(-	-								-
×o>			15.5-									-
ШZ_			-	-								-
BETA			-	1								
		L	16 .0	」 _	L	⊥ _	J	.	L	· 上 _		L
GAP				geo	I his report of boreho technical purposes of information only	ie m nly, r and	iust be withou d do no	read tatte ot ne	I in conjunction with accompanying notes and abbreviations empt to assess possible contamination. Any references to cessarily indicate the presence or absence of soil or ground	s. It h ooten wate	as be tial co r cont	en prepared tor ontamination are for amination. GAP gINT FN. F01a

RL2

CLIENT PROJE LOCAT JOB NO	T: ECT: TION O:	Gol SSO	ARUP Pacific Tinten 06622	tes High bar to 140	way Upgrade b Ewingsdale	COORDS: 552 SURFACE RL: INCLINATION: HOLE DIA: 10	OF STANDPIPE INS 967.2 m E 6828452.3 m N 56 MG 94.01 m DATUM: AHD -90° 0 mm HOLE DEPTH: 12.10 m	SHEE SA94 DRILL DRILL LOGG CHEC	TION: BH2010 T: 1 OF 1 RIG: Pioneer 120 ER: North Coast Drilling ED: BC DATE: 18/7 KED: CSC DATE: 13/8
	Drilli	ng	1		Field Material Des	cription	Instru	umentation D	etails
WATER	DRILL FLUID LEVELS	DEPTH (metres)	DEPTH RL	K GRAPHIC LOG	ABBREVIA SOIL / ROCK MATERIA (Refer to Report of Bor	ATED AL DESCRIPTION ehole For Details)			Steel gatic cover
MB	1 2 3 4 5 6 7 7 7 8 8 9		<u>1.00</u> 93.01		Clayey SILT				Cement Cement Cement Sand 2mm graded
IK 22/08/2007	10		12.10				12.10. RI81.91		3mm PVC screen
	13	-	81.91						_
	_		This for ge	report	of standpipe installation m nical purposes only, withou	ust be read in conjur it attempt to assess p	uction with accompanying notes and abbre possible contamination. Any references to	viations. It has potential cont	s been prepared amination are for

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 553040.9 m E 6828442.5 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 84.58 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 4 DRILLER: North Coast Drilling DATE: 17/7/07 LOGGED: BC

HOLE DIA: 100/76 mm HOLE DEPTH: 20.30 m

CHECKED: CSC DATE: 13/8/07

L			Dril	ling		Sampling				Field Material Descr	ptio	n		
/09/2007 2:51:11 PM	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
DT 05				0.0-	84.58			×	ΜН	Clayey SILT, high plasticity, brown with trace fine grained			RESIDUAL SOIL	Ē
TA-PH.G				-				×						
96_0-BE	_			0.5								St		-
PJ GAF	LDA			-	1.00			× ·						
40 PH.G				1.0	83.58	SPT 1.00-1.45 m 4,7,10 N = 17			ΜН	Clayey SILT, high plasticity, brown mottled grey, rock structure evident			RESIDUAL SOIL TO EXTREMELY WEATHERED ROCK	-
r\066221				-				<u>×</u> ×			Σ			
870 GIN				1.5										-
DATA/7				20-				× ×				VSt		-
MTORY	WB			-				×						
LABOF				- - 2.5		ODT 0 50 0 00		×						-
					2.70 81.88	15/100 N = HB	┢	×		For Continuation Refer to Sheet 2				-
7000 FII				3.0-										-
ROUTE				-										
ERRED				3.5-										-
2E PREF				-										
RUP_T				4.0-										-
22140_/				-										
-150\066				4.5-										-
ROJ/101				-										
: J:\06PI				5.0-										-
LL PAGE				-										
GLB FU				5.5										-
7-07-02.				-										
GEL 200				- 0.0										
BY DAT				6.5-										-
TERED				-										
SRAS AI				- 7.0—										-
5.06.07				-										
ONE_2				- 7.5—										-
TA_NEW				-										
6_0-BE				- 			<u> </u>		L		L_]_
GAP					geo	I ruis report of borehol otechnical purposes of information only	e m nly, and	iust be withou d do no	reac It atte ot ne	In conjunction with accompanying notes and abbreviations. empt to assess possible contamination. Any references to p cessarily indicate the presence or absence of soil or groundy	it ha otent vater	as be ial co cont	en prepared for ontamination are for amination. GAP gINT FN. F()1e

IEN ROJ DCA	IT: ECT TIOI IO:	-: N:	ARI Pac Tint 066	JP ific Hig enbar 22140	ghway to Ew	VUpgrade COORDS: 553040.9 VUpgrade SURFACE RL: 84.5 Vingsdale INCLINATION: -90° HOLE DIA: 100/76 r	m E 8 m nm	68 D/ HC	284 ATU	142. IM: DEI	5 m N 56 MGA94 DRILL RIG: Pioneer 120 AHD DRILLER: North Coast Drilling LOGGED: BC DATE: 17 PTH: 20.30 m CHECKED: CSC DATE: 13						
	0	Drillir	ng			Field Material Description						Defect Information					
WATER	TCR	RQD (SCR)	O DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INF STF 0.03 K		ED GTH Pa ∞ ₽ ∠ ₩	DEFEC & Addit	CT DESCRIPTION	AVER DEFE SPAC (mr	AGE ECT SINC m)			
	100	40 (50) 42 (85)		2.70 81.88 3.00 81.58		Continuation of Sheet 1 BASALT, grey brown with red iron staining throughout pale grey with sections of red / brown iron staining	HW- MW MW				2.78m: J, 60°, Un, Ro 2.86-2.93m: J, 50°, Pl 2.98-3.02m: J, 50°, Pl 3.30m: J, 60-70°, Un, 3.31-3.48m: Rubbled 3.52-3.55m: J, 50°, Ul 3.58m: J, 10°, Un, Ro 3.84m: J, 10°, Pl, Ro, 3.90m: J, 10°, Pl, Ro, J, 10°, P	A, Sn, Iron staining J, Ro, Sn, 3mm, Iron staining I-Un, Ro, Sn, Iron staining Core, caused by drilling n, Ro, Sn, Iron staining Sn, Iron staining					
	100	43 (75)	4.5— 5.0— 5.5—	<u>5.30</u> 79.28		Red brown and grey, some decomposed seams	EW- HW				4.40-4.67m: J, 80°, Pl 4.86-4.90m: J, 70°, Ul 5.07-5.10m: DS, Grav 5.11-5.16m: J, 60-90° 5.19-5.34m: J, 10-30° 5.35-5.55m: core reco	I, Sm, Sn, Iron staining n, Ro, Ct, Silty CLAY velly silty CLAY ', Un, Ro, Sn, Iron staining ', Un, Ro, Sn, Iron staining overed as fragmented rock					
	92	90 (90)	6.0 	6.40 78.18 6.70 6.80		Clayey SILT, high plasticity, grey and brown, some yellow, 2 - 10mm diameter, amygdules. Inferred amygdaloidal BASALT	RS- EW				5.78m: J, 10°, PI, Ro, 6.30m: J, 30°, PI, Ro, 6.38m: J, 50°, PI, Ro,	Vr, Black staining Vr, Black staining Sn, Iron staining					
\int 20% water loss	87	87 (87)	7.0	77.78 7.60 76.98		Grey brown, with some yellow 2 - 10mm diameter amygdules. Inferred extremely	RS- EW				7.00m: No obvious joi	inting in near residual soil					

LIEN ROJ DCA DB N	NT: IECT ATIO NO:	-: N:	ARI Pac Tint 066	JP ific Hig enbar 22140	lhway to Ew	COORDS: 553040.9 Upgrade SURFACE RL: 84.5 ingsdale INCLINATION: -90° HOLE DIA: 100/76) m E 58 m mm	68 D, HC	828 ATI	442. JM: E DEI	5 m N 56 MGA94 DR AHD DR LO PTH: 20.30 m CH	RILL RIG: Pioneer RILLER: North Coa OGGED: BC IECKED: CSC	120 ast Drillin DATE: DATE:	ıg 17 13	7/7 3/8				
	[Drillir	ıg			Field Material Description						Defect Information							
WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	LEL 0:03 VL 0:03 0:03		RED IGTH ⁄IPa -∞₽ ±≚⊞	DEFECT [& Additiona		40 30 30	VER DEFI PAC (m					
			8.0-	8.17	× ×						8.06m: J, 20°, Un, Ro, Cr	n							
	13	0 (8)	8.5— 9.0—	76.41 8.40 8.50 76.08	×	NO CORE (8.17 - 8.40m) Clayey SILT, high plasticity, red, some small diameter yellow amygdules. Inferred extremely weathered BASALT NO CORE (8.50 - 9.20m)	RS- EW				8.45m: J, 30-80°, Un, Ro,	, Sn							
1K 22/08/2007	100	85 (90)	9.5 	9.20 75.38		Clayey SILT, high plasticity, red, some small diameter yellow amygdules and black veins. Inferred extremely weathered BASALT.	RS- EW				9.39m: J, 10°, Un, Ro, Cr	n							
30/07/200710	100	89 (100)	10.0	11.05			EW				10.06m: J, 10°, Un, Ro, C 10.11-10.20m: core recov 10.35m: J, 0°, Pl, Ro, Cn 10.42-10.44m: J, 10°, Un 10.73m: J, 15°, Pl, Ro, Sr	Cn vered as fragmented ro I, Sm, Ct, 20mm n	ock						
	100	70 (90)	11.5 	12.50		BASALT, grey with some green amygdules, microfractures throughout	HW- MW MW			•	11.11-11.21m: J, 20-40°, 11.41m: J, 10-30°, Un, Sr 11.42-11.54m: J, 70°, PI, 11.53-11.65m: J, 0°, sp=′ 11.73m: J, 5°, PI, Sm, Sn 12.25m: J, 15-50°, Un, Re	sp=10-30mm, PI, Ro, m, Sn Sm, Sn 10-30mm, Un, Ro, Sn 1	Sn						
	100	90 (95)		13.10 71.48		Vesicular BASAL1, grey / dark grey with 2 - 10mm diameter vesicles. Some vesicles infilled with green white amygdules BASALT, red, vesicular	SW HW- MW	-		1	13.03m: J, 30°, Un, Ro, C 13.08-13.11m: J, 0-70°, L 13.25-13.30m: J, 0-15°, s 13.68m: J, 20°, Un, Ro, C	Cn Jn, Ro, Sn sp=20mm, Un, Ro, Cn Cn							
	100	100 (100)	14.5 	<u>14.55</u> 70.03 15.30		Vesicles infilled with calcite	-				14.36m: J, 30°, Un, Sm, (15.07m: J, 20°, Un, Sm, (15.23-15.28m: J. 50°, Un	Cn Cn L Ro Cn							
			15.5	69.28		Frequency of vesicles decreasing	MW SW				45.02m 45° In Sm ((n							

	C			G	olde OCi	r ates		
1	CL PF LC JC	.IEN ROJI DCA [:] DB N	IT: ECT TIOI IO:	-: N:	ARU Pac Tint 066	JP ific Hig enbar 22140	ihway to Ew	COOR Upgrade SURF/ ringsdale INCLIN HOLE
:53 PN			0	Drillir	ng			Field Materia
GDT 05/09/2007 2:51	METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DE
JTE\7000 FIELD AND LABORATORY DATA\7870 GINT\06622140 PH.GPJ_GAP6_0-BETA-PH.C			100	100 (100) 97 (97)	16.0 	<u>16.30</u> 68.28		BASALT, grey with trace amygd
06PROJ101-150/06622140_ARUP_T2E PREFERRED ROUT			100	93 (100)	19.0 	20.30		END OF BOREHOLE @ 20.30 Piezometer installed

SHEET: 4 OF 4

ACE RL: 84.58 m DATUM: AHD

RDS: 553040.9 m E 6828442.5 m N 56 MGA94 DRILL RIG: Pioneer 120 DRILLER: North Coast Drilling LOGGED: BC DATE: 17/7/07

NATION: -90° DIA: 100/76 mm HOLE DEPTH: 20.30 m

CHECKED: CSC DATE: 13/8/07 Defect Information

:53 F				Drillir	ng			Field Material Description					Defect Information	
3DT 05/09/2007 2:51	METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	⊒ 0:03 <u> </u> S] =		RED IGTH MPa -∞₽ -∵€₽	DEFECT DESCRIPTION & Additional Observations	AVERAGE DEFECT SPACING (mm)
06622140 PH.GPJ GAP6_0-BETA-PH.C			100	100 (100)	16.0- 16.5- 17.0-	<u>16.30</u> 68.28		BASALT, grey with trace amygdules	MW SW SW FR	/- / 			16.18m: J, 25-35°, Un, Sm, Cn 16.36m: J, 45°, Un, Sm, Cn 16.95m: J, 10°, Un, Ro, Cn	
D AND LABORATORY DATA/7870 GINT			100	97 (97)	17.5— 18.0—								17.40-17.42m: J, 40°, Un, SI, Cn 17.65m: Drill break 18.16-18.57m: J, 75-85°, Un, SI, Vr, green mineral	
22140_ARUP_T2E PREFERRED ROUTE/7000 FIELI			100	93 (100)	18.5 19.0 19.5 20.0								18.51-18.54m: J, 0-5°, sp=5-20mm, Un, Ro, Cn 19.29m: J, 15°, Un, Ro, Vr, Some green mineral deposits 19.88-19.97m: J, 70°, sp=30mm, Un, Sm, Cn	
A_NEW ONE_25.06.07 SRAS ALTERED BY DATGEL 2007-07-02.GLB CORED BOREHOLE J:\06PROJ101-150\066					20.5- 21.0- 21.5- 22.0- 22.5- 23.0- 23.5-	20.30 20.30 - - - - - - - - - - - - -		END OF BOREHOLE @ 20.30 m Piezometer installed						
GAP6_0-BET/			L	L	2 4 .0-	 This geotech	report nical p inforn	of borehole must be read in conjunction with accourses only, without attempt to assess possible nation only and do not necessarily indicate the pr	compa compa conta resenc	anyir amin ce or	ig no atior abse	tes a n. Ar ence	and abbreviations. It has been prepared for ny references to potential contamination are for of soil or groundwater contamination. GAP gl	NT FN. F02a

CLIEN ROJ OCA OB N	NT: IECT NTIOI	: N:	ARUF Pacific Tinter 06622	c High Ibar to 140	COORDS: 5530 nway Upgrade SURFACE RL: b Ewingsdale INCLINATION: HOLE DIA: 100	rade SURFACE RL: 84.58 m DATUM: AHD DRILLER: North Coast Drillin fale INCLINATION: -90° LOGGED: BC DATE: HOLE DIA: 100/76 mm HOLE DEPTH: 20.30 m CHECKED: CSC DATE:										
	Dri	ling			Field Material Description	Instrumentation Details										
WATER	DRILL FLUID LEVELS	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ABBREVIATED SOIL / ROCK MATERIAL DESCRIPTION (Refer to Report of Borehole For Details)											
		0— 2 -	84.58 - - - - - 2.70 - - - - 2.70		Clayey SILT Clayey SILT											
s		4 -	- 01.00 		BASALI	<── Bentonite cement grout miz										
\bigwedge 20% water losi]	6 - 8 -	6.40 6.70 77.78 - 8.17		Clayey SILT CORE LOSS Clayey SILT											
10071K1K22/08/2007	1	0 –	76.08 - <u>9.20</u> - 75.38		Clayey SILT CORE LOSS Clayey SILT											
30/07/2	1	2 -	<u>11.05</u> 73.53 <u>12.50</u> 72.08		BASALT											
	1	4 -	-			<── Bentonite plug										
	1	6 - 8 -	<u>16.30</u> 68.28 		BASALT	16.00, RL68.58										
	2	0 –	- - 20.30 - 64.28			20.30, RL64.28										
		0	-													

CLIENT: ARUP PROJECT: LOCATION:

Pacific Highway Upgrade Tintenbar to Ewingsdale

COORDS: 553039.9 m E 6828444.5 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 84.69 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 3 DRILLER: North Coast Drilling LOGGED: BC DATE: 18/7/07

J	OB N	10:		06622	140				HOLE DIA: 100/76 mm HOLE DEPTH: 11.00 m		СН	ECKED: CSC DATE: 13/8	3/07
		Dri	lling		Sampling				Field Material Descr	iptio	n		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0	84.69		-	<u>×</u> _×	MH	Clayey SILT, high plasticity, brown with some grey sections			RESIDUAL SOIL	
			-				* 						
			0.5-				<u> </u>						-
			-				×						
5		7	10				×						
		intere	1.0-				 ×						
		encou	-				× ·						
		er not	1.5-				<u>× </u>						-
VB	м	dwate	-				* 			Σ			
>		Groui	2.0-				<u> </u>						-
			-				*						
			-				× _ ×						
			2.5				× _						-
)			-				×						
			3.0-				×						-
			-				x						
			35-				<u> </u>						
1				3.60 81.09		H	×		For Continuation Refer to Sheet 2				-
			-										
			4.0-										-
			-										
			4.5-										-
			-										
			50-										
5													
			-										
-			5.5-										-
			-										
			- 6.0 <i>-</i>										-
			-										
5			-										
j			6.5										-
1			-										
5			7.0—										-
0.000			-										
			7.5-										
			-										
		L	-8.0	ו נ ר	— — — — — — — – This report of borehole	1 e mu	ust be	reac	L	⊥ _ It h	as be	⊥	
5				000	tochnical nurnosos or	div v	vithou	t otto	mot to accord possible contamination. Any references to p	otoni	ial co	ntomination are for	

geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

	Ĵ		Go	olde OCi	er ates	5				R	EF	0 0	rt of	BO		OLE:	BH2	012	2	
C P L(LIEN ROJI DCA DB N	IT: ECT TIOI IO:	-: N:	ARI Pac Tint 066	JP ific Hig enbar 22140	lhway to Ew	/ Upgrade ringsdale	COORDS: 55303 SURFACE RL: 8 INCLINATION: -5 HOLE DIA: 100/7	9.9 m E 4.69 m 90° 76 mm	68 D4 HC	2844 ATUN DLE D	44.5 M: A DEP	m N 56 M HD TH: 11.00	MGA94 [[m (DRILL RI DRILLER LOGGED CHECKE	G: Pione R: North (D: BC ED: CSC	eer 120 Coast Dri DAT DAT	lling E: 18 E: 13	3/7/ 3/8/	07 07
			Drillir	ng			Fie	Id Material Descriptio	n						Defeo	ct Informat	tion			
METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MAT	TERIAL DESCRIPTION	WEATHERING	EL 0.03 ST 0.03		ED TH Pa		DEFEC & Additio	T DESCR	IPTION rvations		10 30 30 4	VER/ DEFE PAC (mn 000 001	AGE CT ING 1) 0000
																				-
1	-	100	63 (100)	4.0-	3.60 3.75 3.85 80.84		BASALT, grey with sc Grey brown with red in Brown and red, some	me red iron staining ron staining	MW EW MW- SW				3.60-3.75m: , 3.86m: J, 50° 3.98m: J, 25°	J, 60-90°, °, PI, Ro, \$ °, Un, Ro,	Un, Ro, S Sn Sn	'n				
NMLC		100	59 (70)	4.5	4.60 80.09 5.00 79.69 5.35 79.34 5.60		Brown and red		EW MW EW			44 f t 55 55	4.58m: J, 0-1 4.65-5.00m: : fractured 5.00-5.60m: : hroughout 5.10m: J, 15 ⁶ 5.26m: J, 0°, 5.35-5.60m: :	10°, Un, R sp=5-20m numerous °, Un, Ro, Un, Ro, S sp=5-20m	o, Sn m, Weath closed / t Sn Sn m, Weath	ered zone, ight microfr ered zone,	highly ractures highly			
WB	40%			6.0 6.5 7.0	79.09		Clayey SILT, high pla	sticity, brown	RS			U V	1acured 5.60-11.00m: Weathered R	: RESIDU,	AL SOIL to	o Extremely from 5.6m)	y)			-
				7.5— - - - - - - - - - - - - - - - - - - -	This geotech	× × · · · · · · · · · · · · · · · · · ·	of borehole must be re urposes only, without a lation only and do not r	ad in conjunction with a ittempt to assess possil ecessarily indicate the	accompa ble conta presence		note absen	es and Any note of	d abbreviatio references to soil or grour	ns. It has potential ndwater co	been prej contamin ontaminati	 pared for ation are fo on.		gINT	FN.	F02a RL2
REPORT OF BOREHOLE: BH2012

SHEET: 3 OF 3

CLIENT: PROJECT: LOCATION: JOB NO:

PN

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 553039.9 m E 6828444.5 m N 56 MGA94 DRILL RIG: Pioneer 120 SURFACE RL: 84.69 m DATUM: AHD INCLINATION: -90°

DRILLER: North Coast Drilling LOGGED: BC DATE: 18/7/07 DATE: 13/8/07

HOLE DIA: 100/76 mm HOLE DEPTH: 11.00 m

CHECKED: CSC - - - - -

4:22 P			[Drillir	ng			Field Material Description						Defect Information			
3DT 05/09/2007 2:5	METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	<u>=</u> 0.03 0.=			RED GTH IPa	DEFECT DESCRIPTION C & Additional Observations	AVE DE SP. (ERAG	G T IG
X0UTE\7000 FIELD AND LABORAT ORY DATA\7870 GINT\06622140 PH.GPJ_GAP6_0-BETA-PH.GDT(1	WB	WAT	TCR	Rac	9.0- 9.5- 10.0-	DEPTH RL 		Clayey SILT, high plasticity, brown	RS					8.00m: RESIDUAL SOIL to Extremely Weathered ROCK (rotary drilled from 5.6m)			
TAP6. DETA_NEW ONE 25.06.07 SRAS ALTERED BY DATGEL 2007-07-02.GLB CURED BOREHOLE J.109FK0J101-15010652740_AKUP-12E PREFERVED RC					11.5- 12.0- 12.5- 13.0- 13.5- 14.0- 14.5- 15.5- 15.5- 16.0-		report	END OF BOREHOLE @ 11.00 m Piezometer installed Note: borehole drilled for piezometer installation only					tes	and abbreviations. It has been prepared for			
						yeolech	inform	ation only and do not necessarily indicate the pre	senc	e o	r al	bse	n. A ence	e of soil or groundwater contamination. GAP gIN	IT F	n. f	02a RL2

CL PF LC JC		IT: ECT: TION	SS (1:	AF Pa Tir 06	RUP Icific Inteni 622	Highw bar to B	vay Upgrade Ewingsdale	COORDS: 553 SURFACE RL: INCLINATION: HOLE DIA: 10	039.9 m E 6828444.5 m N 56 84.69 m DATUM: AHD -90° 0/76 mm HOLE DEPTH: 11.	6 MGA94 .00 m	Sheet: 1 Drill Rig Driller: Logged: Checked	OF 1 : Pioneer North Coa BC : CSC	120 Ist Drilling DATE: 18 DATE: 13	\$/7/07 \$/8/07
		Dril	ling				Field Material Des	cription		Instrumenta	ation Details			
MEINUU	WATER	DRILL FLUID LEVELS	DEPTH (metrec)	DE	E <i>PTH</i> RL	GRAPHIC LOG	ABBREVI SOIL / ROCK MATERI (Refer to Report of Bo	ATED AL DESCRIPTION rehole For Details)						
WB	Groundwater not encountered		1 - 2 -	- - - - - - - - - - - -	4.69		Clayey SILT		1.00, RL83.	.69		- Steel gatic Cement - Bentonite o	cover cover grout	mix
			3 -	- - - - - - - - - - - - - - - - - - -	8. <i>60</i> 1.09		BASALT							
	40%		5 - 6 -	- - - - - - - - - - -	5 .60 9.09		Clayey SILT		7.00. RL77.	.69	-	- Bentonite p	blug	
WB			3 -			x x			<u>8.00, RL76.</u>	6.09		- Sand 2mm	graded	
		10) -	- - - - - - - - - - - - - - - - - - -	<u>1.00</u> 3.69				11.00, RL73.			- 3mm PVC	screen	
		1;	<u>2</u>	-										

CLIENT:ARUPPROJECT:Pacific Highway UpgradeLOCATION:Tintenbar to EwingsdaleJOB NO:06622140

COORDS: 553097 m E 6828453.7 m N 56 MGA94DRILL RIG: GemcoSURFACE RL: 75.93 m DATUM: AHDDRILLER: DrillsearcINCLINATION: -90°LOGGED: NPP

SHEET: 1 OF 4 DRILL RIG: Gemco DRILLER: Drillsearch LOGGED: NPP DATE: 21/7/07 CHECKED: CSC DATE: 13/8/07

HOLE DIA: 100/76 mm HOLE DEPTH: 18.00 m

		Dril	ling		Sampling				Field Material Descr	ptio	n		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0-	75.93			× ·	MH	Clayey SILT, high plasticity, red brown, with some		4	RESIDUAL SOIL	Т
Б. Ц.			-				×		medium angular (basaltic) gravel		s		
			0.5-				× 			Σ			
			-										
2			-				×						
			1.0		SPT 1.00-1.45 m		× 				'St		-
7 7700			-		1,0,0 11 10		<u> </u>				ĺ		
	_	$\left \right $	1.5-				×						-
1/8/0			-				× ×						
DATA			2.0-				× ·			<pl)< td=""><td></td><td></td><td>-</td></pl)<>			-
							× ·			ž			
			-				×					0.4m. Dessible schole / considered	
			2.5				 ×				st	Driller indicates "crunching" on V-bit	-
-IELU /			_		SPT 2 80-3 25 m		× · ×						
1000/			3.0-	3.00 72.93	3,4,6 N = 10		×	MI	Sandy SILT medium plasticity red grey and brown with			RESIDUAL SOIL TO EXTREMELY	
			-				× *		fine rounded gravel inclusions, remnant rock structure evident (inferred extremely weathered amyodaloidal			WEATHERED ROCK	
L L			- 2 5 -				× .		basalt, extremely low strength)			completely weathered rock with no	
ET EK			3.5				××						
			-				× Č•						
			4.0-				×·						-
7-140			-				××.			N N	VSt		
2000/0			4.5-		SPT 4.40-4.85 m		××						-
- 10	м		-		4,7,14 N = 21		×						
1004L							××						
			5.0				××.						-
LAGE			-				• × × ×						
LULL			5.5-	5.50 70.43			× ×	MI	Clayey SILT, medium plasticity, grey brown and dark grey			Increased moisture from 5.5m depth,	-
JZ. GLE			-									possible water table?	
			60-		SPT 5.90-6.35 m		×						_
					2,4,5 N = 9		^ *						
DAIG			-				× · ×			L	st		
EUBY			6.5-				× ·			Σ			-
ALIEK			-				×						
OKAO.			- 7.0—				× .						-
00.01			-	7.20			× .		RASALT grow brown you low to low strongth			Weathered BOCK	4
NE_20.				55.75	SPT 7 40-7 70 m		ľ, v		moderately to highly weathered, some medium strength				
			7.5		5,15,HB		∕,∖v`,		l hierea				-
VB N	1		-				۲ ^Ň						
			- 8:0	8.00			[<u> </u>			L	L		
GAF				geo	trus report of borehol technical purposes of	e m nly,	ust be withou	t atte	an conjunction with accompanying notes and abbreviations. mpt to assess possible contamination. Any references to p	it ha	as de ial co	en prepared for entamination are for	71-
					information only	and	do no	ot neo	cessarily indicate the presence or absence of soil or groundv	ater	cont	amination. GAP gint FN. F	ла 212

Caldar
VAssociates

CLIENT:ARUPPROJECT:Pacific Highway UpgradeLOCATION:Tintenbar to EwingsdaleJOB NO:06622140

COORDS: 553097 m E 6828453.7 m N 56 MGA94DRILL RIG: GemcoSURFACE RL: 75.93 m DATUM: AHDDRILLER: DrillsearcINCLINATION: -90°LOGGED: NPP

SHEET: 2 OF 4 DRILL RIG: Gemco DRILLER: Drillsearch LOGGED: NPP DATE: 21/7/07 CHECKED: CSC DATE: 13/8/07

HOLE DIA: 100/76 mm HOLE DEPTH: 18.00 m

		Dri	lling		Sampling				Field Material Descri	ptio	n	
09/2007 2:55:54 PM	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
1 02			8.0-	67.93					For Continuation Refer to Sheet 2			
AP6_0-BETA-PH.GD			- - 8.5—									
2140 PH.GPJ G			- - 9.0— -									
1/8/U GINI /0662			9.5									
			- 10.0— - -	-								
I FIELD AND LAB			- 10.5— - -									
ED ROUTE/7000			11.0— - - -									
- 12E PKEFEKK			11.5— - - -									
0,06622140_ARU				-								
1:\06PROJ\101-15(- - - 13.0—									
LB FULL PAGE			- - 13.5—									
GEL 2007-07-02.G			- - 14.0— -	-								
АПЕКЕР ВҮ РАТ			- - 14.5— - -	-								
25.00.U/ SKAN			- 15.0— - -	- - - -								
BEIA_NEW UNE			15.5— - -	- - -								
GAP6_U	 	L	16.0 —	geo	This report of borehol technical purposes o information only	⊥ nly, and	ust be withou d do no	reac it atte	I in conjunction with accompanying notes and abbreviations. mpt to assess possible contamination. Any references to p cessarily indicate the presence or absence of soil or groundw	L It hat tent vater	as be ial co conta	en prepared for ntamination are for amination. GAP gINT FN. F01a RL2

	NT:			UP		COORDS: 553097 n	n E	6828453.7	m N 56 MGA94	DRILL RIG: Gemco	
.0C/		N:	Tint	tenbar	to Ev	vingsdale INCLINATION: -90°	5 11	DATONI.	AND	LOGGED: NPP DATE	: 21
OB	NO:		066	22140		HOLE DIA: 100/76	mm	HOLE DE	PTH: 18.00 m	CHECKED: CSC DATE	: 13
	[Drilli	ng			Field Material Description				Defect Information	
VATER	ICR	ROD (SCR)	DEPTH meters)	DEPTH	SRAPHIC OG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING		DEFE	ECT DESCRIPTION litional Observations	AV DI SF
			8.0	687.0903		BASALT, dark grey and brown, with some	HW-		8.00-8.45m: Recove	ered as coarse gravel size pieces,	- ~ ~
	100	20 (35)	8.5-	-		amygaules	MW		With fractures general clay 8.30-8.40m: With fin 8.45-9.00m: J, 0-10°	e grained material throughout c, sp=30-100mm, PI, Sm-Ro, Sn	
			9.0-	9.00 66.93	$\left \begin{array}{c} & & \\ & & \\ & & \\ & & \end{array} \right $	BASALT dark arey iron stained on joints	S/M		8.80m: DS, 0°, PI, cl	ay, 20mm	
			- - - 9.5-				500		9.05m: J, 30°, St, Ro 9.17m: J, 45°, Pl, Ro 9.37m: J, 15°, Pl, Ro	o, Sn o, Sn o, Sn, 10mm	
	100	74 (74)	- - 10.0	-					9.83m: J, 70-75°, Ur	n, Ro, Sn	
			- - - 10.5	-					10.15m: J, 0°, Pl, Ro 10.34m: J, Pl, Ro, S 10.38m: J, 15°, Un, 10.42m: J, 20°, Pl, F	o, Sn n Ro, Sn Ro, Sn	
			- - 11.0 - -	-			MW		10.50m: J, 65-70°, F 10.60m: J, 10°, St, F 10.65m: J, 50°, Un, 10.73m: J, 50°, PI, F 10.78m: J, 45°, PI, F 10.92m: J, 55°, PI, F	²l, Ro, Sn Ro, Sn Ro, Sn Ro, Sn Ro, Sn Zo, Sn Zo, Sn	
	94	15 (65)	11.5— - -	<u>11.60</u> 64.33		with some vesicles	-		11.00-11.30ff. J, 60 possible onset of co 11.33m: J, 10°, St, F 11.50-12.00m: J, 5-' 11.60m: J, 45°, PI, S 11.64m: J, 40°, PI, S	rostone weathering? Ro, Sn 10°, sp=30-50mm, PI, Sm-Ro, Sn Sm-Ro, Sn Sm, Sn	
			12.0— - - - 12.5—	63.93		Amygdaloidal BASALT, red brown, amygdules to 5mm diameter, with some vesicles	HW		11.86m: J, 20°, PI, S 12.13m: J, 0-10°, PI 12.20m: J, 0-10°, PI 12.30m: J, 0-10°, PI 12.42m: L 60°, PI	Sm, Sn , Ro, Sn, subrounded fine gravel , Ro, Sn , Ro, Sn	
07 IK				<u>12.85</u> 13.00		NO CORE (12.85 - 13.00m)			12.43fn: J, 60 , PI, 8 12.45m: J, 0°, PI, Ro 12.59m: J, 65°, Un, 12.60-12.80m: core	on, Sn. fine gravel chips Sm, Sn recovered as fragmented rock	
22/08/20				62.93		Amygdaloidal BASALT, red brown, amygdules to 5mm diameter	HW		13.05-13.23m: J, 5-7	10°, PI, Ro, Cn-Sn	
			13.5-	13.40 62.53 13.75 62.18		brown grey	-		13.35m: J, 5°, PI, Ro 13.43m: J, 5°, PI, Ro 13.52m: J, 20°, PI, F 13.61m: J, 15°, PI, F	o, Sn o, Sn Ro, Sn Ro, Sn	
07	100	82 (87)	14.0-						13.75m: possible co	vo, on ntact?	
IX 30/07/20			14.5	-					14.71m: J, Pl-Un, Si	n, Cn	
			15.0-	<u>15.25</u>		Amyndaloidal and Vecicular RASALT, dark arroy	SW		15 25m· 1 10° DI E	20 Cn	
	100	35 (45)	15.5-	-		brown and red brown, vesicles to 4mm diameter, infilled with calcite and chloride amygdules	HW- MW		15.25m J, 10, PI, F 15.34m: J/DS, PI, SI break, 30mm 15.40-15.55m: core 15.55-16.00m: J, 0- 15.74m J, 70° PI C	m, Cn, fine gravel , possible drilling recovered as fragmented rock 10°, sp=10-30mm, PI-Un, Sm, Cn Sm, Cn-Sn	
	\perp _		- 1 6 .0	16.00	K,v,	L					

AP gINT FN. F02a RL2

CI			Ge SS	D Ide OCI ARI Pac Tint	LP Lific Hig enbar	ghway to Ew	COORDS: 553097 r / Upgrade SURFACE RL: 75.9 /ingsdale INCLINATION: -90	m E 93 m	68: 68:	REF 28453)ATUN	ר ב 17 ו 1.7	ORT OF BOREHOLE: BH2013 SHEET: 4 OF 4 7 m N 56 MGA94 DRILL RIG: Gemco 1: AHD DRILLER: Drillsearch LOGGED: NPP DATE: 21/7/07
JC)B N	10:		066	22140		HOLE DIA: 100/76	mm	H	OLE C	DEF	EPTH: 18.00 m CHECKED: CSC DATE: 13/8/07
МЕТНОD	WATER	TCR	RaD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	EL 0.03 _ 0.] =	NFERRE TRENG Is ₍₅₀₎ MP	D H a 0 H	Defect information D H D H DEFECT DESCRIPTION AVERAGE DEFECT SEL
			67 (71)	16.0 16.5 17.0 17.5 18.6 19.0 19.5 20.0 21.5 22.0 22.0 22.0 22.0 22.5 23.0 23.5	59.93		Amygdaloidal and Vesicular BASALT, dark grey brown and red brown, vesicles to 4mm diameter, infilled with calcite and chloride amygdules some amygdules to 15mm diameter without amygdules or vesicles with amygdules and vesicles, grey END OF BOREHOLE @ 18.00 m Piezometer installed	SW				16.13m: J, 25°, Un, Sm, Sn 16.20m: J, Un, Ro, Sn 16.21m: PJ, 15mm, crushed / gravelly 16.33m: J, 50°, Un, Ro, Sn 16.42-16.45m: chiling breaks 16.46m: chiling break 16.96-17.03m: J, 0-10°, PI, Ro, Sn, 20-40mm, possible drilling break 17.24m: J, 60-70°, PI, closed / tight 17.33m: J, 50°, PI, SI, Vr 17.74-17.85m: J, 0-5°, PI, Ro, Cn, possible drilling break
	l	L	<u> </u>	_{24.0}	This geotech	report nical p inform	of borehole must be read in conjunction with acc urposes only, without attempt to assess possible nation only and do not necessarily indicate the pr	compa conta esenc	anyii amii amii ce o	⊥ ∐ ⊥ ng note nation. r absen	s ai Ang	and abbreviations. It has been prepared for Any references to potential contamination are for the of soil or groundwater contamination. GAP gINT FN. F0: R

CLIEN PROJ LOCA JOB N		SS(: 1:	ARUP Pacific Tinten 06622	tes High bar to 140	way Upgrade Ewingsdale	COORDS: 553 SURFACE RL INCLINATION HOLE DIA: 10	8097 m E : 75.93 m : -90° 00/76 mm	6828453.7 m N DATUM: AH HOLE DEPTH	N 56 MGA94 D H: 18.00 m	SHEET: 1 DRILL RIG DRILLER: LOGGED: CHECKED	OF 1 : Gemco Drillsearc NPP : CSC	h DATE: DATE:	21/7/07 13/8/07
	Dril	ling			Field Material D	escription			Instrumer	ntation Details			
METHOD WATER	DRILL FLUID	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ABBRE SOIL / ROCK MATE (Refer to Report of E	VIATED RIAL DESCRIPTION Borehole For Details)				175	- 01		
WB ADT		1 - 2 - 3 - 4 - 5 - 6 - 7 - 88 - 99 - 99 - 1 -	73.93 3.00 72.93 72.93 70.43 70.43 68.73 8.00 67.93 9.00 66.93		Sandy SILT Clayey SILT BASALT BASALT BASALT						- Bentonite	cement gro	out mix
0/07220008/20071K		2 – 3 – 4 –	<u>12.00</u> 63.93 <u>12.85</u> 62.93 <u>13.75</u> 62.18		BASALT NO CORE BASALT BASALT			12.00	<u>), RL63.93</u>		- Bentonite	granules	
	1	5 – 6 – 7 –	<u>15.25</u> 60.68		BASALT			15.00	<u>, RL60.93</u>		- Sand 2mn - 3mm PVC	n graded Sscreen	
	1	8 – 9 –	<u>18.00</u> 57.93				_	18.00	1: :::::: 1: ::::::: 1. RL57.93 [:::::::::				

٤

06.07

CLIENT: ARUP PROJECT: Pacific Highway Upgrade LOCATION: Tintenbar to Ewingsdale

COORDS: 553094.4 m E 6828456.5 m N 56 MGA94 DRILL RIG: Gemco SURFACE RL: 76.03 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 3

DRILLER: Drillsearch LOGGED: NPP DATE: 21/7/07

Durling Sampling Field Material Description Image: Second Secon	E	10		0.		00022	140				HOLE DIA: 100/76 mm HOLE DEPTH: 14.30 m		CH	ECKED: CSC DATE: 13/8/	07
Normalization SAMPLE OR PERM SAMPLE OR PERM SAMPLE OR PERM SOL / ROCK MATERIAL DESCRIPTION USUBL USUBL SOL STRUCTURE AND OBSERVATIONS 001 0.0 -				Dril	ling		Sampling	I			Field Material Descri	ptio	n		
0.0 76.03 Image: Submitted in the source of	/09/2007 2:58:43 PN	MEIHOU	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
1 1	GAPE_0-BETA_NEW ONE_25.06.07 SRAS ALTERED BY DATGEL 2007-07-02 GLB_FULL PAGE_J:06PROJ/101-150/06822140_ARUP_TZE PREFERRED ROUTE/7000 FIELD AND LABORATORY DATA7870 GINT/06822140 PH.GPJ_GAPE_0-BETA-PH.GDT_0		L-M		0.0 0.5 	6.50 69.53	This report of borehold			MH ML	Sandy (fine) SILT, medium plasticity, dark grey and brown, inferred completely weathered basalt, some pieces (coarse gravel size) of medium to high strength rock in cuttings	W-CI En Lith	as be	RESIDUAL SOIL RESIDUAL SOIL to Extremely Weathered ROCK en prepared for ntamination are for	

Golder

CLIENT: ARUP PROJECT: Pacific Highway Upgrade LOCATION: Tintenbar to Ewingsdale JOB NO: 06622140

COORDS: 553094.4 m E 6828456.5 m N 56 MGA94 DRILL RIG: Gemco SURFACE RL: 76.03 m DATUM: AHD INCLINATION: -90°

SHEET: 2 OF 3 DRILLER: Drillsearch LOGGED: NPP DATE: 21/7/07

HOLE DIA: 100/76 mm HOLE DEPTH: 14.30 m

CHECKED: CSC DATE: 13/8/07

			Dri	lling		Sampling				Field Material Descri	ρτιο	n		
(09/2007 2:58:43 PM	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
TA-PH.GDT 05/				8.0				× * × * × ×	ML	Sandy (fine) SILT, medium plasticity, dark grey and brown, inferred completely weathered basalt, some pieces (coarse gravel size) of medium to high strength rock in cuttings			RESIDUAL SOIL to Extremely Weathered ROCK	-
J GAP6_0-BE		L-M		8.5— - -				× * × × × *			Σ			-
22140 PH.GP				9.0				× • × • × ×						
D GINT/066				9.5	9.60 66.43			ו ו		BASALT arey brown inferred very low to low strength		-	Weathered ROCK	-
DRY DATA\787 (- - 10.0—						inferred highly weathered to moderately weathered				-
AND LABORAT	ADT			- - 10.5										-
TE\7000 FIELD		м		- - 11.0—										-
EFERRED ROU				- - 11.5										
				- - 12.0										-
-150\06622140		н		- - 12.5—										-
101/LC	_				12.80			Įv,́v,		For Continuation Bofor to Shoot 2				-
AGE J:/06PRC				- 13.0— -	00.20									
2.GLB FULL P				- 13.5 - -										
GEL 2007-07-0				- 14.0										
ERED BY DAT				- - 14.5 -										-
07 SRAS ALTI				- 15.0—										-
EW ONE_25.06				- - 15.5										-
D-BETA_NI		_												-
GAP6_(_		'	10:0	geo	This report of borehole technical purposes or information only	e m nly, and	ust be withou	reac it atte	I in conjunction with accompanying notes and abbreviations. empt to assess possible contamination. Any references to p cessarily indicate the presence or absence of soil or groundw	It hat otent	as be ial co	en prepared for ntamination are for amination. GAP gINT FN. F0.	1a

RL2

			G	olde oci	er ates	5				R	EP	OR	T OF	BOF		DLE:	BH2	014	Ļ	
C P L'	LIEN ROJ DCA DB N	NT: ECT TIOI NO:	-: N:	ARI Pac Tint 066	JP ific Hig enbar 22140	jhway to Ew	/ Upgrade ringsdale	COORDS: 553094 SURFACE RL: 76 INCLINATION: -9 HOLE DIA: 100/7	1.4 m E 3.03 m 0° 6 mm	E 68 DA HO	2845 TUM	6.5 m : AHC EPTH	N 56 M D : 14.30	IGA94 D D Lu m C	RILL RI RILLER OGGED HECKEI	G: Gem : Drillse : NPP D: CSC	, co arch DAT DAT	E: 21, E: 13,	/7/07 /8/07	
8.0		0	Drillir	ng			Field	d Material Descriptior	ı						Defec	t Informa	tion			_
METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATI	ERIAL DESCRIPTION	WEATHERING	EL 0.03 SI	ERREI	<u>е</u> н 10 н О		DEFECT & Addition	DESCRIF nal Obser	PTION vations		AV DE SP 10 10	ERAGE EFECT PACING (mm) 0000000000000000000000000000000000	
יוט דיסטוטטב וייד. וינו בוויב דוינה בוויב ויטט בוויטט וובה זיט במסואין טון מיוואומיס טון ומטבוייט וויטו סיט עבידו	80/07/2007 K 22/08/2007			9.0 9.0 9.5 9.5 10.0 10.5 11.0 11.5 12.0 12.5																
		100	30 (33)		<u>12.80</u> 63.23 <u>14.30</u> This reotechi	report	Continuation of Sheet 2 Amygdaloidal and Vesi brown and dark grey, a vesicles to 10mm, som END OF BOREHOLE (Reached target depth Piezometer installed Note: borehole drilled fi only	2 cular BASALT, red imygdules to 15mm, e with clay infilling 2 14.30 m or piezometer installation or piezometer installation d in conjunction with a tempt to assess possib	mw mw	nyingamina	notes	12.6 13.6 14.2 14.2 14.2	30-13.50m 58m: J, 20 15m: J, 0-5 26m: J, 0-5 28m: J, 0-5 28m: J, 0-5 2000	: Core rec °, PI-Un, F 5°, PI, Sm- 5°, PI, Sm- 5°, PI, Sm- s, It has t potential	overed as	ared for	ted rock			

CL PF LC		IT: ECT: TION	GO SSC	ARUF Pacific Tinter 06622	tes c High bar to 2140	way Upgrade Ewingsdale	COORDS: 553 SURFACE RL: INCLINATION: HOLE DIA: 10	OF STANDPIPE INST 094.4 m E 6828456.5 m N 56 MGA 76.03 m DATUM: AHD -90° 0/76 mm HOLE DEPTH: 14.30 m	SHEET: 94 DRILL RI DRILLER LOGGED CHECKE	1 OF 1 G: Gemco 2: Drillsearch D: NPP DATE: 21/7 D: CSC DATE: 13/8
		Drill	ing	I		Field Material De	scription	Instrum	entation Detai	ils
METHOD	WATER	DRILL FLUID	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ABBREV SOIL / ROCK MATER (Refer to Report of Bo	IATED IAL DESCRIPTION orehole For Details)			
NMLC ADT	30/07/2007 14 22/08/2007	1 1 2 2 2 3 3 4 4 4 5 5 6 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 10 10 11 11 12 12 10 11 11 12 12 12 12 12 12 12 12 12 12 12		6.50 69.53 66.43 63.23 14.30 61.73		Clayey SILT Sandy SILT BASALT BASALT				 Steel gattc cover Cement Bentonite cement grout mit Bentonite Granules Sand 2mm graded 3mm PVC screen
			- 	This	report	– – – – – – – – – – – of standpipe installation r nical purposes only, witho		Liction with accompanying notes and abbrevia	— — — — — — tions. It has be	

CLIENT: PROJECT: LOCATION:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 553127.7 m E 6828430.5 m N 56 MGA94 DRILL RIG: Tracked Scout SURFACE RL: 69.35 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 4 DRILLER: Drillsearch

LOGGED: BC DATE: 25/7/07 DATE. 40/0/07

JOB NO: 06622140 HOLE DIA: 100/76 mm HOLE DEPTH: 16.60 m							СП	ECRED. CSC DATE. 13/8/0	/				
		Dri	lling		Sampling				Field Material Descr	ptio	n		
5/09/2007 3:01:29 PM METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0	69.35			× -	СН	Silty CLAY, high plasticity, red brown			RESIDUAL SOIL	-
3_0-BETA-PH.GC			- - 0.5	0.60					Clavey SILT high plasticity, grey brown, red inopstaining	M-Q	St		
NT'06622140 PH.GPJ GAPI	м		- - - - - - 1.5-		SPT 0.90-1.35 m 5,18,20 N = 38				throughout, some medium subangular angular basalt gravel			WEATHERED ROCK	-
ORATORY DATA/7870 GI										M-D	н		-
E/7000 FIELD AND LAB		_	2.5— 3.0—		SPT 2.40-2.70 m 17,10,18/100mm								-
WB	м		-				× -						-
			3.5 4.0 										
GAP6_0-BE		L_	- -8:0	geo	This report of borehol technical purposes o information only	le m nly, and	ust be withou d do no	read it atte	d in conjunction with accompanying notes and abbreviations. mpt to assess possible contamination. Any references to p cessarily indicate the presence or absence of soil or groundy	It hat otent vater	as be ial co conta	en prepared for ntamination are for amination. GAP gINT FN. F	01a

CL	CLIENT: ARUP COORDS: 553127.7 m E 6828430.5 m N 56 MGA94 DRILL RIG: Tracked Scout PROJECT: Pacific Highway Upgrade SURFACE RL: 69.35 m DATUM: AHD DRILLER: Drillsearch LOCATION: Tintenbar to Ewingsdale INCLINATION: -90° LOGGED: BC DATE: 25/7/07																		
LC	CA NB N	TIOI 10.	N:	Tini 066	tenbar 22140	to Ew	ringsdale	INCLINATION: -9	0° 6 mm	на	ר ב	DF	PTH [.] 16 60 m	LOGGED:	BC CSC	DATE	: 25 · 13	/7/(/8/()7)7
Ē		<u>с.</u> С	Drillir	ng			Fie	eld Material Description						Defect I	nformation	0,112	. 10		
METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MA	TERIAL DESCRIPTION	WEATHERING			RED GTH IPa ₽ ±∃⊒	DEF & Ac	FECT DESCRIP1 dditional Observa	TION ations		AV Di SF	EFEC PACIN (mm)	GE (1000 (1000 (1000 (1000 (1000) (1
					3.40		Continuation of Shee	t 1											-
		90	70 (80)	3.5- 4.0- 4.5- 5.0-	65.95 3.75 65.60 4.20 65.15		BASALT, grey (possil BASALT, grey brown Clayey SILT, red brow diameter amygdules, weathered amygdaloi	ole boulder?) with iron staining vn, with some 1-3mm inferred extremely dal basalt	SW HW EW				3.77m: J, 0°, Un, F 3.80-4.20m: J, 0-1i some gravel 4.20-5.20m: defect matrix 4.65m: J, 15°, Un,	Ro, Cn 0°, sp=0-10mm, ts generally weat Ro, Sn	Un, Ro, Sn, hered into s	iron, oil			-
NMLC		73	46 (60)	5.5— 6.0—	5.20 64.15 5.40 63.95 6.28 63.07		NO CORE 5.20-5.40r BASALT, red brown, - NO CORE 6.28-6.60r	n zones of residual soil n	EW	-			5.40-5.90m: core n 5.95-6.28m: J, 0-10	ecovered as frag 0°, sp=10-20mm	mented roc , Un, Ro, Sr	k 1			-
1		83	52 (75)	6.5 7.0 7.5	6.60 62.75 7.60 61.75		BASALT, grey BASALT, brown		SW				6.60m: J, 30°, PI, F 7.00m: J, 40°, Un, 7.44m: J, 40°, PI, F 7.56-7.70m: DZ, gr 7.72m: J, 35°, PI, F 7.80m: J, 20°, PI, F	Ro, Sn, iron Ro, Sn, iron Ro, Sn, iron ravelly silt Ro, Sn, iron Ro, Sn, iron					
				.	This geotech	report nical p inform	of borehole must be re urposes only, without a nation only and do not i	ad in conjunction with a attempt to assess possib necessarily indicate the p	ccompa le conta presenc	inyin amin e or	g no ation abse	tes a i. Ar ence	and abbreviations. It ny references to pote of soil or groundwate	has been prepar ntial contamination er contamination	ed for on are for	GAP g	INT F	N. 1	F02a RL2

CL PR LO JO	EN OJI CA ⁻ B N	т: Ест ГЮІ О:	: N:	ARI Pac Tint 066	JP ific Hig enbar 22140	jhway to Ew	/ Upgrade COORDS: 553127. / Upgrade SURFACE RL: 69 /ingsdale INCLINATION: -90 HOLE DIA: 100/76	.7 m E .35 m)° 6 mm	E 682 DA HO	28430.4 TUM: LE DEF	5 m N 56 MGA94 AHD PTH: 16.60 m	4 DRILL RIG: Tracked DRILLER: Drillsearc LOGGED: BC CHECKED: CSC	Scout h DATE: DATE:	25. 13.	/7/C /8/C
		C	rillir	ng			Field Material Description					Defect Information			
MEIHOD	WATER	TCR	RQD (SCR)	0.8 DEPTH (meters)	DEPTH RL 8.10	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFI STR Is(5 0.00 고고	ERRED ENGTH ™Pa Ength ™Pa	DEFE & Add	ECT DESCRIPTION litional Observations		AV DI SP	ieraci efec vacin (mm)
		76	25 (55)	8.5 9.0 9.5 10.0 10.5 11.0 11.0	<u>9.10</u> 60.25		NO CORE 8.10-9.10m Amygdaloidal BASALT, purple brown with red zones, 1-3mm diameter calcite amygdules, zones of clayey silt (high plasticity)	EW			9.10-9.60m: core rec 9.69m: J, 20°, PI, Rc 9.72m: J, 10°, PI, Rc 9.79m: J, 0°, Un, Ro 9.81m: J, 0-10°, Un, 9.94-9.98m: J, 60°, F 10.05m: J, 0°, Un, R 10.21-10.23m: J, 50° 10.35m: J, 20°, PI, S 10.36-10.44m: J, 70° 10.52m: J, 10°, PI, S 10.58-10.62m: J, 60° 10.72m: J, 0°, Un, R 10.95-11.25m: J, 0-1 11.28-11.31m: J, 40°	covered as fragmented roci b, Sn b, Cn Ro, Cn PI, Sm, Sn b, Cn °, PI, Sm, Cn °, PI, Sm, Cn °, PI, Sm, Sn b, Cn °, PI, Sm, Sn b, Cn 10°, sp=30-50mm, Un, Ro,	k		
	22/08/2007	80	22 (70)	11.5 	57.95 12.00 57.35 14.40 54.95		NO CORE 11.40-12.00m BASALT, grey brown with some amygdules an red ironstaining, zones of clayey silt	d EW HW			11.33-11.38m: J, 20 12.05m: J, 0°, Un, R 12.10m: J, 45°, Pl, R 12.21-12.50m: J, 10' 12.45m: J, 40°, Pl, S 12.55-12.58m: J, 10' 12.82m: J, 40°, Un, I 13.05m: J, 5°, Pl, Sn 13.17m: J, 30°, Pl, S 13.23m: J, 40°, Un, R 13.45m: J, 5°, Un, R 13.45m: J, 5°, Un, R 13.45m: J, 5°, Un, R 13.45m: J, 5°, Un, R 13.49-13.58m: J, 35' 13.53m: J, 0°, Un, R 13.75-13.95m: J, 20°, Pl, R 13.75-13.95m: J, 20°, I 4.01-14.06m: J, 45' 14.08-14.18m: J, 50°	-90°, St, Sm, Cn to, Cn to, Sn °, sp=50-80mm, Un, Ro, Si °, sp=10mm, Pl, Ro, Sn °, Pl, Sm, Sn Ro, Cn m, Sn Sm, Sn Ro, Cn to, Cn °, sp=80mm, Pl, Sm, Sn to, Cn to, Cn So, Cn to, Cn So, Cn to, Cn So, Cn to, Cn So, Cn to,	n , Sn ock		
	30/07/2007 1 (4) 22,	84	34 (55)	14.5 	<u>14.75</u> 54.60		BASALT, grey with red iron staining	HW	/		14.75-14.82m: core 14.85m: J, 20°, PI, S 14.86-14.93m: J, 30 14.87m: J, 15°, PI, S 14.93m: J, 30°, PI, S 15.01-15.05m: J, 80° 15.17m: J, 0°, Un, S 15.28-15.56m: J, 30 15.47m: J, 50°, PI, S 15.72m: J, 10°, Un, I	recovered as fragmented r im, Cn -90°, St, Sm, Cn im, Cn m, Cn m, Cn -60°, sp=10-90mm, Pl, Sm m, Cn Ro, Cn	ock , Sn		

Golder

SHEET: 4 OF 4

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 553127.7 m E 6828430.5 m N 56 MGA94 DRILL RIG: Tracked Scout SURFACE RL: 69.35 m DATUM: AHD INCLINATION: -90° HOLE DIA: 100/76 mm HOLE DEPTH: 16.60 m

DRILLER: Drillsearch LOGGED: BC

DATE: 25/7/07 DATE: 13/8/07 CHECKED: CSC

GAP6 0-BETA NEW ONE 25.0607 SRAS ALTERED BY DATGEL 2007-07-02.GLB CORED BOREHOLE _3:06PRCM101-15006523140_ARUP_T2E PREFERRED ROUTE17000 FIELD AND LABORATORY DATAI7870 GINT06622140 PH.GPJ GAP6_0-BETA-PH.GDT 65092207 3:32:22 PM Drilling Field Material Description Defect Information INFERRED STRENGTH Is(50) MPa WEATHERING AVERAGE DEFECT SPACING DEFECT DESCRIPTION RQD (SCR) GRAPHIC LOG METHOD ROCK / SOIL MATERIAL DESCRIPTION WATER DEPTH (meters) 0.0 0.1 10 10 10 & Additional Observations (mm) TCR DEPTH RL 000 1000 1000 1000 ∟≥±£₩ 16.0 BASALT, grey with red iron staining 16.05m: J, 10°, Un, Ro, Sn 16.16m: J, 5°, Un, Sm, Cn 16.25-16.60m: core recovered as fragmented rock \mathbf{v} V NMLC 16.30 ΗW $\mathbf{\nabla}$ 53.05 BASALT, red brown \sim 16.5 16.60 END OF BOREHOLE @ 16.60 m Reached target depth Piezometer installed 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22 0 22.5 23.0 23 5 ¹24.6 This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for GAP gINT FN. F02a information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

RL2

CLIENT: PROJECT: OCATION: IOB NO: Drilling				A F T 0	RUP Pacific inten 6622	: High bar to 140	COORI way Upgrade SURFA Ewingsdale INCLIN HOLE I	DS: 553127.7 m l CE RL: 69.35 m ATION: -90° DIA: 100/76 mm	E 6828430.5 m N DATUM: AHD HOLE DEPTH:	N 56 MGA94 16.60 m	DRILL RIG DRILLER: LOGGED: CHECKED	: Tracked Drillsearc BC : CSC	l Scout h DATE: 25/7 DATE: 13/8
		Dril	ling				Field Material Description			Instrumen	tation Details		
	WATER	DRILL FLUID LEVELS	DEPTH		DEPTH RL	GRAPHIC LOG	ABBREVIATED SOIL / ROCK MATERIAL DESCRI (Refer to Report of Borehole For D	PTION etails)					
			1		69.35 <u>0.60</u> 68.75		Silty CLAY Clayey SILT					- Steel gatio Cement	c cover
			3 4 5		3.40 3.75 65.60 4.20 65.15 5.20		BASALT BASALT Clayey SILT NO CORE					- Bentonite	cement grout miz
			6 7		63.95 6.28 6.60 62.75 7.60 61.75		BASALT NO CORE BASALT						
		1	8 9 0		<u>8.10</u> 61.25 <u>9.10</u> 60.25		NO CORE						
		1	1		<u>11.40</u> 57.95 <u>12.00</u> 57.35		NO CORE		<u> </u>	RL58.25 RL57.25	e-	- Bentonite	granules
	/08/2007	11 14	3		14 40				13.10,	RL56.25		- Sand 2mn	n graded
	30/07/2007 11 22	1:	5		<u>14.75</u> 54.60 <u>16.30</u>		NO CORE BASALT			RL53.25		- 3mm PVC	screen
		1	7		<u>16.60</u> 52.75		BASALT						

This report of core photographs must be read in conjunction with accompanying notes and abbreviations. It has been prepared for geotechnical purposes only, without attempt to assess possible contamination. Any references to potential contamination are for information only and do not necessarily indicate the presence or absence of soil or groundwater contamination.

Golder
V Associates
Associates

CLIENT: ARUP PROJECT: Pacific Highway Upgrade LOCATION: Tintenbar to Ewingsdale JOB NO: 06622140

INCLINATION: -90°

COORDS: 553127.2 m E 6828432 m N 56 MGA94 SURFACE RL: 69.38 m DATUM: AHD

SHEET: 1 OF 3 DRILL RIG: Tracked Scout DRILLER: Drillsearch LOGGED: BC DATE: 26/7/07 CHECKED: CSC DATE: 13/8/07

HOLE DIA: 100/76 mm HOLE DEPTH: 8.10 m

		Drilling Sampling			Field Material Descri	ptio	n						
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0-	69.38			×-	СН	Silty CLAY, high plasticity, red brown, some fine to			RESIDUAL SOIL	
1.6U			-				<u> </u>	1	medium basalt gravel				
4-A			-	1			<u>×</u> _,	1					
5			0.5-				×	1					-
AP6			-	-									
2			-	1			Ê→						
Э. Н		eq	1.0-				×_						-
2140		serv	-	-			×_]					
0002		ot ot	-	1			>	<					
		ater n	1.5	1			× –,			5			-
AD AD	М	mdwa	-				×						
AIA		Grou						4					
2 2 2			2.0-	1			×−						-
C A I C			-				×						
ABOI			-				<u> </u>						
			2.5	1				4					-
			-				<u>× –</u>						
1 0			-	-				-					
EV/0			3.0	1				4					-
			-	3.30			×,						
L L			35-	66.08					For Continuation Refer to Sheet 2				
х Ц Ц			3.5-										
ц Т Т			-	1									
2			40-										
AKU				-									
2140			-	1									
2000/			45-										
061-1			-										
			-										
2210			5.0-	1									-
1			-										
PAG			-	-									
			5.5-	1									-
2.LB			-	1									
-02			-	1									
n-/ nn			6.0-										-
SEL Z			-	1									
DAIC			-										
L BY			6.5-	-									-
Ш			-										
2 AL			-										
SKA			7.0—										-
.00.01			-	-									
ц. 25			-	1									
			7.5-	1									-
L NEV			-	-									
861/			-	1									
 94		L _		_ د	∟	⊥ _ le m	J ⊔ist h≏		L	∟ th	 as he	⊥	1
G				geo	technical purposes o	nly,	withou	it atte	empt to assess possible contamination. Any references to p	otent	ial co	ontamination are for	11-
					information only	and	u do no	ot ne	cessarily indicate the presence or absence of soil or groundv	vater	cont	amination. GAP gint FN. FU	10 10

C F L			G SS T: N:	ARI Pac Tint	JP enbar	jhway to Ew	/ Upgrade vingsdale	COORDS: 553127 SURFACE RL: 69. INCLINATION: -90	2 m E 38 m °	F 68 D/	REF 32843 ATUN	90 32 m M: 7	DRT OF BC m N 56 MGA94 AHD	SHEET: 2 OF 3 DRILL RIG: Tracker DRILLER: Drillseard LOGGED: BC CHECKED: CSC	BH2(d Scout ch DATE)16 : 26 : 13	/7/0)7)7
F			Drillin	10	22140		Fia	Id Material Description					111. 0.10 m	Defect Informatio	n	. 10	0,0	
METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MAT	TERIAL DESCRIPTION	WEATHERING	INI ST SI SI SI SI SI	FERRE	ED TH 2a 90 HH	DEFE & Add	CT DESCRIPTION		AV DI SF 30	ERACIN EFEC (mm)	JE JG 20000
		0.0 0.0 0.5 0.5 1.0 1.0 1.5 2.0 2.0 2.5 3.0 3.30 2.5 66.08 3.5 66.08 4.0 V 4.5 V 5.5 64.38 NO CORE 5.00-6.44 5.5 6.0		Continuation of Sheet BASALT, grey BASALT, red brown, v	1 with clayey silt zones	SW				3.30-3.75m: Possible 3.75-5.00m: J, 0-10° 4.40-4.70m: Core rea 4.90-5.00m: Core rea	e boulder? , sp=50-300mm, Un covered as fragmented ro	ck.						
				6.0 	6.40 62.98 7.70 61.68		BASALT, red brown a strength	nd grey, varying zones of	EW				6.40-6.60m: Core rea 6.65-7.30m: J, 0-10° 7.35-7.85m: Core rea <u>7.90m: J, 0°, Un</u>	covered as fragmented ro , sp=50-200mm, Un covered as fragmented ro	ck.			
				0.0 - (This geotech	report nical p inform	of borehole must be re- urposes only, without a nation only and do not n	ad in conjunction with acc ttempt to assess possible necessarily indicate the pr	compa conta esenc	nyin amina e or	g note ation. absen	es an Any nce c	nd abbreviations. It has references to potent of soil or groundwater	as been prepared for ial contamination are for contamination.	GAP g	INT F	N. F	[:] 02a RL2

O As	iolder sociates
CLIENT:	ARUP

CLIENT: PROJECT: LOCATION: JOB NO:

ARUF Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 553127.2 m E 6828432 m N 56 MGA94 DRILL RIG: Tracked Scout SURFACE RL: 69.38 m DATUM: AHD INCLINATION: -90°

SHEET: 3 OF 3 DRILLER: Drillsearch LOGGED: BC DATE: 26/7/07 CHECKED: CSC DATE: 13/8/07

HOLE DIA: 100/76 mm HOLE DEPTH: 8.10 m

			D	rillir	g			Field Material Description						Defect Information				
1 UD/2/20/20	ЕТНОD	ATER	CR	QD (SCR)	EPTH neters)	DEPTH	RAPHIC DG	ROCK / SOIL MATERIAL DESCRIPTION	/EATHERING			ER EN :0) N	RED IGTH IPa - က ဗု	DEFECT DESCRIPTION & Additional Observations	A\ D SF	/ER/ EFE PAC (mn	AGE ECT ING n)	= ; 00
5	Σ	≥	Ĕ	Ř	<u>55</u>	RL	ΩĞ		5	Ш	₹_	JΣ	±≥ü	5	30	89	968	30
	METHOD	WATER	TCR	RAD (SCR)	B.5 9.0 9.5 10.0 11.5 12.0 13.0 13.0 B.5 13.0 B.5 B.5 B.5 B.5 B.5 B.5 B.5 B.5	DEPTH RL 8.10		ROCK / SOIL MATERIAL DESCRIPTION	WEATHERIN					DEFECT DESCRIPTION & Additional Observations 8.00-8.10m: Core recovered as fragmented rock.		/ER.E.		
5					ç	leotech	nical p	urposes only, without attempt to assess possible on attempt and do not necessarily indicate the pre-	conta	ami e c	inat or a	tior	n. Ar ence	ny references to potential contamination are for of soil or groundwater contamination. GAP g	INT F	FN.	F0)2a

PRC 00	EN DJE CAT	IT: ECT TIOI IO:	: N:) 	ARUP Pacific Tinter 06622	c High bar to 140	COOI way Upgrade SURF Ewingsdale INCLI HOLE	RDS: 553127.2 m E 6828432 m N 5 FACE RL: 69.38 m DATUM: AHD INATION: -90° E DIA: 100/76 mm HOLE DEPTH: 8	6 MGA94 8.10 m	SHEET: 1 OF 1 DRILL RIG: Tracked Scout DRILLER: Drillsearch LOGGED: BC DATE: 26/7/ CHECKED: CSC DATE: 13/8/
		Dri	lling				Field Material Description		Instrumer	ntation Details
	WAIEK	DRILL FLUID LEVELS	DEPTH	(metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ABBREVIATED SOIL / ROCK MATERIAL DESCI (Refer to Report of Borehole For	RIPTION Details)		
-	Groundwater not observed		1		69.38		Silty CLAY			Steel gatic cover Cement
A	Δ 80%		3		<u>3.30</u> 66.08 <u>3.75</u> 65.63		BASALT BASALT		<u>-66.48</u> 	Bentonite pellets
			5	-	<u>5.00</u> 64.38		NO CORE	4.90, RI	<u>64.48</u>	
			6		<u>6.40</u> 62.98		BASALT			3mm PVC screen
			8	-	<u>8.10</u> 61.28			7.90, RI	L61.48	

CLIENT: PROJECT: LOCATION: JOB NO:

ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 553228.9 m E 6828420.4 m N 56 MGA94 DRILL RIG: Gemco SURFACE RL: 54.77 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 4 DRILLER: Drillsearch LOGGED: BC DATE: 23/7/07

HOLE DIA: 100/76 mm HOLE DEPTH: 21.00 m

CHECKED: CSC DATE: 13/8/07

	Drii	ling		Sampling				Field Material Descri	puo		
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
		0.0	54.77			×-	СН	Silty CLAY, high plasticity, red brown with some fine			RESIDUAL SOIL
		-						gravel			
		0.5-				<u> </u>					
		0.5									
		-				×					
		1.0-				×					
		-		SPT 1.20-1.65 m		^ 					
		1 5		3,6,7 N = 13		> 					
		1.5				,					
		-				×>					
м		2.0-				*			₽- D	ಹ	
		-				x					
						$\left \right\rangle$					
		2.5-				<u> </u>					
		-		SPT 2.70-3.15 m 3 4 6 N = 10		<u> </u>					
		3.0-		0, 1,0 11 10		×,					
		-				×,					
		3.5				$\left \frac{1}{x} \right $					
_		-				<u> </u>					
₹	~	4.0-	4.00 50.77			×	мн	Clavey SILT high plasticity, red brown with grey zones			
	7/200	-						red ironstaining, rock structure evident, some jointing.			ROCK
	30/0	-		SPT 4 40-4 85 m		×					
	$ \ge$	4.5		3,2,5 N = 7		× ×					
		-				x x					
		5.0-				×					
		-									
		-				×					
		5.5				 				Ľ.	
		-				x					
М-Н		6.0-		SPT 5.90-6.35 m		×			Σ		
		-		4,0,4 11 - 7		× ×					
		-				× ×					
		6.5				×					
		-									
		7.0									-
		-				× ×					
		-		SPT 7.30-7.75 m		× ×				st	
		7.5		3,4,9 N = 13		×					
_			7.80			x		For Continuation Bafar to Sheet 2			
			-0.97	L	1_]					L

	Ć	Ĵ	G	olde	er ates					REP	ORT	OF B	OREH SHEET:	OLE: 2 OF 4	BH20)17
M	CLIE PRO LOC JOB	NT: JEC ATIC NO:	T: DN:	ARI Pac Tint 066	JP ific Hig enbar 22140	jhway to Ew	v Upgrade ringsdale	COORDS: 553228 SURFACE RL: 54 INCLINATION: -90 HOLE DIA: 100/76	.9 m E .77 m)° 6 mm I	682842 DATUM HOLE D	0.4 m N : AHD EPTH:	56 MGA9	4 DRILL R DRILLEF LOGGEI CHECKE	IG: Gemco R: Drillsear D: BC ED: CSC	o rch DATE DATE	: 23/7/07 : 13/8/07
212:0			Drilli	ng			Fi	eld Material Description					Defe	ct Informatio	on	
H.G.L.I UD/U9/2007 3.1	METHOD	TCR	RQD (SCR)	DEPTH (meters)	DEPTH	GRAPHIC LOG	ROCK / SOIL MA	TERIAL DESCRIPTION	WEATHERING	INFERREI STRENGT Is ₍₅₀₎ MPa	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	DEF & Ac	ECT DESCR	IPTION rvations		AVERAGE DEFECT SPACING (mm) 0000000000000000000000000000000000
GAPE DELA NEW ONE 25.06/07 SYAS AL LIFELUE 12 VAIOLE ZUV-V/-ULGUE CUREU BOREHOLE JUOFHOUT1-130/0002/140_ARUP_1/E FRETERREU MUULE/UNU FIELD ANU LABORAI URT DAIAVOV UNI VOZATHA- FRAZEZIA- FRAZ				0.5	7.80 46.97 	v v	Continuation of Shee BASALT, red brown of borehole must be r urposes only, without ation only and do not	t 1 and grey brown ead in conjunction with ad attempt to assess possibl	HW	ing notes ination. A production of the second	and abbi		has been pre	pared for ination are for	GAP g	INT FN. F02a
GAP6_0-BETA					46.97 46.97 This geotech	report nical p inform	BASALT, red brown borehole must be r urposes only, without lation only and do not	and grey brown — — — — — — — — — — ead in conjunction with ac attempt to assess possibl necessarily indicate the p	HW e contam resence	ring notes ination. A or absence	and abbi	reviations. It ences to pote or groundwate	has been pre ntial contamir er contaminat	pared for ation are for ion.	GAP g	INT FN. F02 RL

ROJ OCA OB N	ECT TIOI	-: N:	ARU Pac Tint 066	JP ific Hiç enbar 22140	ghway to Ew	v Upgrade COORDS: 553228 v Upgrade SURFACE RL: 54 vingsdale INCLINATION: -90 HOLE DIA: 100/76	.9 m E .77 m)° 6 mm	68 D/ HC	828 ATI	3420 UM	A m N 56 MGA94 DRILL RIG: Gemco AHD DRILLER: Drillsearch LOGGED: BC DATE: 23/7/07 PTH: 21.00 m CHECKED: CSC DATE: 13/8/07					
	0	Drilliı	ng			Field Material Description					Defect Information					
WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	EL 0.03 VL 0.03		RED NGTH MPa	DEFECT DESCRIPTION	AVI DE SP (ERA EFEC ACIN (mm)			
	100	96 (96)	8.0	8.85 45.92		BASALT, red brown and grey brown BASALT, grey	HW				8.17m: J, Un, Ro, Sn, iron 8.32m: J, 20°, Un, Ro, Sn, iron 8.48m: J, 25°, PI, Ro, Sn 8.60m: J, 10°, Un, Ro, Sn 8.80-8.85m: core recovered as fragmented rock					
			9.5	9.15		BASALT, red brown with some zones of grey, red ironstaining in microfractures	HW MW	-								
	62	12 (20)	10.0	44.77		NO CORE 10.00-11.00m										
			11.0— - - 11.5—	<u>11.00</u> 43.77		BASALT, red brown, with some zones of grey, red ironstaining on microfractures	HW	-			11.00-11.09m: fragmented core 11.10m: J, 10-20°, Un, Ro, Sn 11.16m: J, 40°, PI, Ro, Sn 11.17-11.90m: J, 0-30°, sp=10-30mm, PI-Un, Ro, Sn					
	100	0 (15)	12.0— - - 12.5— -								11.91-12.50m: J, 0-30°, sp=5-20mm, PI-Un, Ro, Sn 12.15m: J, 65°, PI, Ro, Sn, iron staining 12.53-12.85m: J, 0-10°, sp=40mm, Un, Ro, Cn					
			- 13.0— - -	-							12.86-13.70m: J, 0-20°, sp=2-20mm, PI, Ro, Sn 12.90m: J, 70°, PI, Ro, Sn, iron staining					
	33	0 (10)	13.5— 14.0—	<u>13.70</u> 41.07		NO CORE 13.70-14.75m		-			13.40m: J, 45-90°, Un, Ro, Sn, iron staining					
			- 14.5— - -	<u>14.75</u> 40.02		Amygdaloidal BASALT, red brown and grey	HW				14.76-14.80m: J, 50°, PI, Sm, Sn					
	69	0 (40)	15.0— - - 15.5—			brown, with 2-8mm diameter amygdules					14.85-15.36m: DZ, fine subangular basalt gravel 15.45-16.75m: J, 0-10°, sp=40-80mm, Un, Ro, Cn					

C P L J			G SS	AR Pac Tin 066	UP cific Hig tenbar	shway to Ew	COORDS: 553228.9 r VDgrade SURFACE RL: 54.77 ingsdale INCLINATION: -90° HOLE DIA: 100/76 m	m E ' m ım	Г 68 D,	8 EI 3284 ATU	PC 20. M:	SHEET: 4 OF 4 4 m N 56 MGA94 DRILL RIG: Gemco AHD DRILLER: Drillsearch LOGGED: BC DATE PTH: 21 00 m CHECKED: CSC DATE) 1 7 : 2(: 1)	7 3/7/ 3/8/	/07
_			Drillir	na			Field Material Description					Defect Information	_		_
METHOD	WATER	TCR	RQD (SCR)	DEPTH (meters)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	LL 0:03 BL ST	= ERR RENG (50) MF	ED STH Pa m ² :> H	DEFECT DESCRIPTION & Additional Observations	30 30 30 8	VER DEFE (mn 00000000000000000000000000000000000	AGE CT ING n) 0000 0000
1		100	0 (85)	16.5- 17.0- 17.5-	<u>16.70</u> 38.07		Amygdaloidal BASALT, red brown and grey brown, with 2-8mm diameter amygdules BASALT, grey brown	HW HW- MW				16.07-16.17m: J, 80-90°, Un, Ro, Cn 16.87-17.05m: core recovered as fragmented rock 17.07-17.25m: J, 0-5°, sp=30-50mm, Un, Ro, Cn 17.35-17.38m: J, 30°, PI, Ro, Cn 17.41m: J, 5-10°, St, Ro, Vr, black veneer 17.45-17.48m: J, 50°, Un, Ro, Vr, black veneer 17.51-17.54m: J, 45°, PI, Ro, Vr, black veneer 17.58-18.10m: J, 0-20°, sp=10-30mm, PI, Ro, Sn 17.80m: J, 45°, PI, Ro, Sn, iron staining 19.00m: J, 20°, PI, Ro, Sn, iron staining			
NMLC		100	100 (100)	18.5- 19.0- 19.5- 20.0- 20.5-	18.10 36.67 18.90 35.87 20.50 34.27		BASALT, grey with 2-5mm diameter calcite amygdules decreasing amygdule content Vesicular BASALT, grey with 2-10mm diameter vesicles, some 3-10mm diameter calcite amygdules, becoming red brown with depth	WW- SW SW				 18.00m: J, 30°, Pl, Ro, Sn, iron staining 18.13m: J, 0°, Un, Ro, Cn 18.39-18.65m: undulating microfractures with blue mineral veneer 18.45-18.49m: J, 40°, Un, Ro, Cn 18.70-18.78m: J, 30°, Un, Ro, Vr 19.18m: J, 0°, Un, Ro, Cn 19.49m: J, 10°, Pl, Ro, Sn, blue oxide 19.61-19.70m: J, 50°, Un, Ro, Sn, blue oxide 20.21m: J, 20°, Pl, Ro, Cn 20.69m: DS, 0°, fine subangular gravel 			
				21.5- 22.0- 22.5- 23.0- 23.5- -24.0-			END OF BOREHOLE @ 21.00 m Reached target depth Piezometer installed								

UP UP<	CL PR LO JO				ARU Pacia Tinte 0662	P fic Hig nbar t	REPORT COORDS: 54 hway Upgrade SURFACE R to Ewingsdale INCLINATIO HOLE DIA:	OF STANDPIPE INSTA 3228.9 m E 6828420.4 m N 56 MGA94 L: 54.77 m DATUM: AHD N: -90° 100/76 mm HOLE DEPTH: 21.00 m	ALLATION: BH2017 SHEET: 1 OF 1 DRILL RIG: Gemco DRILLER: Drillsearch LOGGED: BC DATE: 23/7/07 CHECKED: CSC DATE: 13/8/07
Open State Open State State			Dri	ling			Field Material Description	Instrumen	ntation Details
10 14.77 Slip CLAY 2 -	METHOD	WATER	DRILL FLUID LEVELS	DEPTH (metres)	DEPT	H GRAPHIC LOG	ABBREVIATED SOIL / ROCK MATERIAL DESCRIPTION (Refer to Report of Borehole For Details)		
$16 - \frac{1670}{38.07} \times BASALT$ $18 - \frac{18.10}{36.67} \times BASALT$ $20 - \frac{20.50}{20.50} \times BASALT$ $21.00 \times BASALT$ $21.00 \times BASALT$ $21.00 \times BASALT$ $21.00 \times BASALT$	NMLC ADT	1430107/2007	1	0 2 - 4 - 6 - 8 - 2 - 4 -	54.7 - - - - - - - - - - - - - - - - - - -		Silty CLAY		Steel gatic cover Cement Generation G
18 - 18.10 V BASALT Sand 2mm graded 20 - <td< td=""><td></td><td></td><td>1</td><td>6 -</td><td>- <u>16.7</u> - ^{38.0}</td><td>, (~~ , (~~ , (~~~</td><td>BASALT</td><td><u>17.00, RL37.77</u></td><td>Bentonite cement grout</td></td<>			1	6 -	- <u>16.7</u> - ^{38.0}	, (~~ , (~~ , (~~~	BASALT	<u>17.00, RL37.77</u>	Bentonite cement grout
20 - 20.50 V BASALT 3mm PVC screen			1	8 -	- <u>18.1</u> - <u>36.6</u> -		BASALT		Sand 2mm graded
			2	0 -	20.5 21.0 33.7		BASALT		→ → → → 3mm PVC screen
			2	2 -	-				

G	older	I	REPORT OF CORE PHOTOGRAPHS: BH2	2017
CLIENT: PROJECT: LOCATION: JOB NO:	ARUP Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140	COORDS: 553228.9 m E 6828420.4 m N 56 MGA94 SURFACE RL: 54.77 m DATUM: AHD INCLINATION: -90° HOLE DIA: 100/76 mm HOLE DEPTH: 21.00 m	SHEET: 2 OF 3 DRILL RIG: Gemco DRILLER: Drillsearc LOGGED: BC CHECKED: CSC	h DATE: 23/7/07 DATE: 13/8/07
		BH2017 B00—1900 B0X 2 0F 3	106622140 TINTENBAR TO EWINGSDALE	
	13	CORE, Loss	2// CORE/Loss///	
	15	CREATED STORE OF THE STORE	LAND REAL	
	17 200		<u>AIDTORARA</u>	
	This report of core photog contamination.	praphs must be read in conjunction with accompanying notes and abbreviations. It has beer Any references to potential contamination are for information only and do not necessarily ind	prepared for geotechnical purposes only, without attempt to assess possible icate the presence or absence of soil or groundwater contamination.	GAP gINT FN. F3

ñ

CLIENT: ARUP PROJECT: LOCATION: JOB NO:

Pacific Highway Upgrade Tintenbar to Ewingsdale 06622140

COORDS: 553231 m E 6828417.3 m N 56 MGA94 SURFACE RL: 54.75 m DATUM: AHD INCLINATION: -90°

SHEET: 1 OF 1 DRILL RIG: Tracked Scout DRILLER: Drillsearch LOGGED: BC DATE: 24/7/07 CHECKED: CSC DATE: 13/8/07

HOLE DIA: 100 mm HOLE DEPTH: 8.00 m

			Dril	ling		Sampling				Field Material Desc	iptio	n	
/09/2007 3:10:45 PM	PENETRATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USC Symbol	SOIL / ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
020				0.0-	54.75			×	СН	Silty CLAY, high plasticity, red brown			RESIDUAL SOIL
P6_0-BETA-PH.GD	N	vi		0.5									-
2140 PH.GPJ GA	-			- 1.0				×					
4/7870 GINT/0662				- 1.5 - -									-
BORATORY DAT	L	-M		2.0				× · · · · · · · · · · · · · · · · · · ·					
00 FIELD AND LA				2.5	3.00			×> *> >					
RED ROUTE/70				3.0 3.5	51.75				мн	Clayey SILT, high plasticity, grey brown			
SUP_T2E PREFE			2007	4.0									-
-150\06622140_AF			IX 30/07/2	- - 4.5									
SE J:\06PROJ\101				- - 5.0									-
02.GLB FULL PAG				- 5.5 -									
ATGEL 2007-07-				6.0					-				
S ALTERED BY D				6.5					-				
NE_25.06.07 SR#				7.0									
0-BETA_NEW O					8.00					END OF BOREHOLE @ 8.00m Reached target depth Piezometer installed Note: borehole drilled for piezometer installation only			
GAP6					geo	This report of borehole technical purposes or information only	e m hly, and	ust be withou do no	reac it atte ot ne	in conjunction with accompanying notes and abbreviations mpt to assess possible contamination. Any references to p ressarily indicate the presence or absence of soil or ground	It h oten vate	as be tial co cont	en prepared for ntamination are for amination. GAP gINT FN. F01a RL2
CLIEN PROJI LOCA ⁻ JOB N	IT: ECT: TION IO:	: 1:	ARUF Pacific Tinter 06622	c Highway Upgra bar to Ewingsdal 140	C de S e II F	COORDS: 553 SURFACE RL: NCLINATION: HOLE DIA: 10	231 m E 6828417.3 m N 56 MGA 54.75 m DATUM: AHD -90° 0 mm HOLE DEPTH: 8.00 m	SHEET 94 DRILL F DRILLE LOGGE CHECK	: 1 OF 1 RIG: Tracked Sc R: Drillsearch D: BC Dr ED: CSC Dr	out ATE: 24/7/ ATE: 13/8/			
--	----------------------------	--	---	--	---	---	---	---	---	---------------------------------			
	Dril	ling	1	Field	Material Descrip	tion	Instru	mentation Det	ails				
WATER	DRILL FLUID LEVELS	DEPTH (metres)	DEPTH RL	SOIL / RC (Refer to SOIL / RC	ABBREVIATEI CK MATERIAL D Report of Borehol	D DESCRIPTION le For Details)							
1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×		1 2 3 3 5 6 7 8	54.75 3.00 51.75 8.00 46.75	* Silty CLAY * Silty CLAY * * <					Steel gatic cov Cement Bentonite cem Bentonite pelle Sand 2mm gra San	ent grout mix ets aded			

Appendix D Slug Test Analysis Reports

Appendix E Water Sample Laboratory Certificates

Envirolab Services Pty Ltd

ABN 37 112 535 645 54 Frenchs Rd Willoughby NSW 2068 ph 02 9958 5801 fax 02 9958 5803 email: tnotaras@envirolabservices.com.au

CERTIFICATE OF ANALYSIS 13294

6622140, T2E

20 Waters

23/08/07

23/08/07

<u>Client:</u> Golder Associates 88 Chandos St St Leonards NSW 2065

Attention: Fabienne d'Hautefeuille

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by:
 24/08/07

 Date of Preliminary Report:
 Not Issued

 Issue Date:
 24/08/07

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer

Business Development & Quality Manager

Ion Balance						
Our Reference:	UNITS	13294-1	13294-2	13294-3	13294-4	13294-5
Your Reference		BH2003-	BH2004-	BH2005-	BH2006-	BH2007-
		20070822	20070822	20070822	20070821	20070821
Date Sampled		22/08/07	22/08/07	22/08/07	21/08/07	21/08/07
Type of sample		Water	Water	Water	Water	Water
Calcium	mg/L	180	4.0	32	2.5	3.8
Potassium	mg/L	6.8	1.5	2.9	0.64	0.72
Sodium	mg/L	93	22	38	15	12
Magnesium	mg/L	0.11	3.4	7.1	2.1	2.1
Carbonate Alkalinity as CaCO3	mg/L	160	<0.1	<0.1	<0.1	<0.1
Bicarbonate Alkalinity as CaCO3	mg/L	<0.1	18	120	8	8
Sulphate, SO4	mg/L	<5.0	14	50	10	16
Chloride (titration) - water	mg/L	31	22	37	23	<20

Ion Balance						
Our Reference:	UNITS	13294-6	13294-7	13294-8	13294-9	13294-10
Your Reference		BH2008-	BH2009-	BH2013-	BH2014-	BH2015-
		20070821	20070821	20070821	20070821	20070821
Date Sampled		21/08/07	21/08/07	21/08/07	21/08/07	21/08/07
Type of sample		Water	Water	Water	Water	Water
Calcium	mg/L	3.2	11	24	3.3	6.0
Potassium	mg/L	0.94	2.0	2.5	0.76	0.76
Sodium	mg/L	9.7	24	62	14	15
Magnesium	mg/L	1.6	3.4	3.7	1.6	3.6
Carbonate Alkalinity as CaCO3	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Bicarbonate Alkalinity as CaCO3	mg/L	10	50	130	10	40
Sulphate, SO4	mg/L	7.0	29	50	22	17
Chloride (titration) - water	mg/L	<20	<20	34	<20	<20

Ion Balance						
Our Reference:	UNITS	13294-11	13294-12	13294-13	13294-14	13294-15
Your Reference		Creek Cut6-	Creek Cut19	SP13-	SC19-3-	Dup1-
		20070821	-20070821	20070821	20070821	20070821
Date Sampled		21/08/07	21/08/07	21/08/07	21/08/07	21/08/07
Type of sample		Water	Water	Water	Water	Water
Calcium	mg/L	2.1	2.6	3.4	2.0	2.0
Potassium	mg/L	2.5	2.9	2.2	6.0	2.6
Sodium	mg/L	5.9	7.5	6.7	3.2	6.1
Magnesium	mg/L	1.2	1.6	1.4	1.4	1.2
Carbonate Alkalinity as CaCO3	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Bicarbonate Alkalinity as CaCO3	mg/L	4	6	8	4	4
Sulphate, SO4	mg/L	8.0	9.0	7.0	11	9.0
Chloride (titration) - water	mg/L	<20	<20	<20	<20	<20

ACCREDITED FOR TECHNICAL COMPETENCE

lon Balance Our Reference: Your Reference Date Sampled Type of sample	UNITS	13294-16 Dup2- 20070821 21/08/07 Water	13294-17 Creek Cut6 -20070822 22/08/07 Water	13294-18 Creek Cut19- 20070822 22/08/07 Water	13294-19 SP13- 20070822 22/08/07 Water	13294-20 BH1021- 20070822 22/08/07 Water
Calcium	mg/L	32	2.7	3.2	3.0	12
Potassium	mg/L	2.8	1.6	2.0	0.95	2.0
Sodium	mg/L	36	11	11	12	89
Magnesium	mg/L	7.0	1.8	2.1	1.7	3.9
Carbonate Alkalinity as CaCO3	mg/L	<0.1	<0.1	<0.1	<0.1	60
Bicarbonate Alkalinity as CaCO3	mg/L	120	8	12	8	230
Sulphate, SO4	mg/L	56	5.0	6.0	5.0	<5.0
Chloride (titration) - water	mg/L	36	<20	<20	<20	<20

Method ID	Methodology Summary
Metals.20 ICP- AES	Determination of various metals by ICP-AES.
LAB.6	Alkalinity - determined titrimetrically in accordance with APHA 20th ED, 2320-B.
LAB.9	Sulphate determined turbidimetrically.
LAB.11	Chloride determined by argentometric titration.

Envirolab Reference: 13294 Revision No: R 00 ACCREDITED FOR TECHNICAL COMPETENCE

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Ion Balance						Base II Duplicate II %R	PD	
Calcium	mg/L	0.03	Metals.20 ICP-AES	<0.030	13294-1	180 180 RPD: 0	LCS-1	96%
Potassium	mg/L	0.03	Metals.20 ICP-AES	<0.030	13294-1	6.8 6.7 RPD: 1	LCS-1	97%
Sodium	mg/L	0.03	Metals.20 ICP-AES	<0.030	13294-1	93 93 RPD: 0	LCS-1	90%
Magnesium	mg/L	0.03	Metals.20 ICP-AES	<0.030	13294-1	0.11 0.10 RPD: 10	0 LCS-1	91%
Carbonate Alkalinity as CaCO3	mg/L	0.1	LAB.6	<0.1	13294-1	160 160 RPD: 0	[NR]	[NR]
Bicarbonate Alkalinity as CaCO3	mg/L	0.1	LAB.6	<0.1	13294-1	<0.1 <0.1	LCS-1	100%
Sulphate, SO4	mg/L	5	LAB.9	<5.0	13294-1	<5.0 <5.0	LCS-1	113%
Chloride (titration) - water	mg/L	20	LAB.11	<20	13294-1	31 26 RPD: 18	LCS-1	105%
QUALITY CONTROL	UNITS		Dup. Sm#		Duplicate	Spike Sm#	Spike % Recovery	1
Ion Balance				Base + I	Duplicate + %RPD			
Calcium	mg/L		13294-11	2.1	2.2 RPD: 5	13294-2	90%	
Potassium	mg/L		13294-11	2.5 2.6 RPD: 4		13294-2	94%	
Sodium	mg/L		13294-11	5.9 6.2 RPD: 5		13294-2	93%	
Magnesium	mg/L		13294-11		1.2 RPD: 0	13294-2	90%	
Carbonate Alkalinity as CaCO3	mg/L	ıg/L 13294-11		<0.1 <0.1		[NR]	[NR]	
Bicarbonate Alkalinity as CaCO3	mg/L		13294-11	4 4 RPD: 0		[NR]	[NR]	
Sulphate, SO4	mg/L		13294-11	8.0 [N/T]		13294-2	105%	
Chloride (titration) - water	mg/L		13294-11		<20 <20	[NR]	[NR]	
QUALITY CONTROL	UNITS		Dup. Sm#		Duplicate	Spike Sm#	Spike % Recovery	/
Ion Balance				Base + I	Duplicate + %RPD			
Bicarbonate Alkalinity as CaCO3	mg/L		13294-18		12 [N/T]	LCS-1	100%	
Sulphate, SO4	mg/L		13294-18	6.0	6.0 RPD: 0	[NR]	[NR]	

Report Comments:

Asbestos analysed by: Not applicable for this job

INS: Insufficient sample for this test	NT: Not tested	PQL: Practical Quanitation Limit
RPD: Relative Percent Difference	NA: Test not required	LCS: Laboratory Control Sample
NR: Not requested	<: Less than	>: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable;</th>>5xPQL - 0-50% RPD is acceptable.Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for
SVOC and speciated phenols is acceptable.Surrogates: Generally 60-140% is acceptable.

Appendix F Conceptual Groundwater Model

SECTION

F-1	INTRODUCTION	1
F-2	GEOLOGY AND SOILS	1
	F-2.1 Regional Geology	1
	F-2.2 Neranleigh-Fernvale Group	1
	F-2.3 Lismore Basalt	1
F-3	HYDROGEOLOGY	3
F-4	CONCEPTUAL GROUNDWATER MODEL	5
	F-4.1 Introduction	5
	F-4.2 Conceptual Geological and Hydrogeological Setting	5
	F-4.3 Conceptual Groundwater Model Characteristics	7

APPENDIX G - TABLES

Table F-1: Cut 6 and Cut 19 Conceptual Groundwater Models Characteristics7

PAGE

F-1 INTRODUCTION

To assist in undertaking predictive numerical modelling of the hydrogeological system and groundwater flow conditions likely to be operating along the proposed T2E road alignment, Golder has constructed a *conceptual groundwater model* (CGM). The CGM attempts to provide as robust a representation of the key features of the physical system and its behaviour, as is possible from the data collected to date.

This section provides detailed descriptions of the key components of the CGM, and how they are used to characterise the hydrogeology of the typical road cutting and the groundwater flow system/s which operate therein. From this assessment it is possible to estimate how the road cutting may impact on the likely groundwater and surface water flows to the creeks and springs

F-2 GEOLOGY AND SOILS

F-2.1 Regional Geology

The regional geology in the area traversed by the preferred route is illustrated on the 1:100,000 Lismore-Ballina Sheet 9640.

The Alstonville Plateau is underlain by Lismore Basalt of the Lamington Volcanics. The basalt was erupted as lava flows from Mt Warning about 20 million years ago (Tertiary). The lava flows solidified on the former land surface, comprising weathered rock of the Neranleigh-Fernvale Group of Devonian-Carboniferous age.

F-2.2 Neranleigh-Fernvale Group

The oldest rocks in the area are part of the Neranleigh-Fernvale Group. The Neranleigh-Fernvale Group includes sedimentary rocks such as shales, greenstone and conglomerate, and low grade metamorphic rocks such as greywacke and argillite. Extensive deformation and folding has resulted in steeply dipping strata.

The Neranleigh-Fernvale Group is present at depth beneath the Alstonville Plateau, but does not outcrop along the preferred route alignment. Strata inferred to be part of the Neranleigh-Fernvale Group were encountered at depth below the proposed floor of a cut in some of the recent investigation boreholes within the vicinity of the proposed Ross Lane Interchange.

F-2.3 Lismore Basalt

The Lismore Basalt typically consists of sub-aerially extruded basalt (lava flows). The basaltic lavas were extruded over the former land surface of irregularly eroded and weathered rock of the Neranleigh-Fernvale Group in individual lava flows, usually less than 25 m thick.

Time lapses between lava flows were often sufficient for significant weathering, soil formation and deposition of thin layers of usually poorly lithified sedimentary rocks to take place between eruptions.

Corestone weathering profiles and columnar joint patterns are common within the basalt. Weathering penetrates the rock along vertical and horizontal joints and along the top of flows. The weathering zone develops outward from the joints and fracture plains, and isolates blocks or boulders of fresh rock to form corestones. The corestones boulders may have a columnar profile. They may later become incorporated into colluvial deposits, as observed in some of the recent test pits. In some areas, corestones become remnants on the ground surface and may roll down slopes during periods of high rainfall.

The lava flows are commonly vesicular (containing air voids, typically less than about 10 mm in diameter) near the top, sometimes with red-brown and purple-brown "boles" (fossil soils) of variable thickness. Subsequent mineralisation sometimes leads to infilling of the vesicles with small crystals known as amygdules (amygdaloidal basalt). "Amygdule" is from the Latin for almond, which is the typical shape of the crystals that fill the vesicles.

The vertical variability in the basalt is apparent from investigations undertaken by Golder Associates, and water bore logs obtained from the *Department of Infrastructure, Planning and Natural Resources* (DIPNR, see Golder Associates, 2004), which indicate interbedded high and low strength layers and clay layers. Clay layers or fossil soils are typically about 1 m to 5 m thick, and interbeds of high and low strength basalt vary from about 5 m to 25 m thick. The regional dip of the individual lava flows is generally 0 to 5 degrees to the north west.

The fossil soils are likely to have developed on a previous erosional surface which is likely to have an irregular profile.

A report by Brodie and Green (2002) on the hydrogeology of the Alstonville Plateau indicates that the base of the Lismore Basalt varies between about RL 0 m and RL 50 m. The resulting total thickness of the Lismore Basalt is thought to be up to 150 m at the top of St Helena Hill. Near Ross Lane, Tintenbar, a borehole penetrated the base of the Lismore Basalt at RL 65m (15 m depth). The thickness of the Lismore Basalt is not known in other areas of Tintenbar, but the thickness is generally expected to increase in the northerly direction.

The generalised basalt stratigraphy encountered during previous investigations by Golder Associates within the area broadly comprises:

• Residual soils (basalt derived) of mainly high plasticity, to variable depth but often between about 3 m and 5 m depth;

- Extremely weathered basalt (with essentially soil properties), often to at least 15 m depth; over,
- Discrete layers of basalt ranging from very low to extremely high strength, highly weathered to fresh.

In addition to the residual soil and basalt rock units described above, the steep slopes and escarpment are frequently draped with landslide debris and colluvium derived from the basalt.

F-3 HYDROGEOLOGY

The local residual weathering profiles and regional layered bedrock geological sequences within the Lismore Basalt govern the nature of the shallow and deeper/regional (respectively) groundwater regimes in the area. Perched groundwater tables can be present within the shallow residual soil profile (regolith) and, locally, within the underlying weathered or fractured basalt sequences. Deeper groundwater systems (the 'deeper' systems studied and the regional system/s) exist within the more permeable fractured or weathered layers of basalt that are confined or semi-confined between the relatively massive and competent high strength, and less permeable, basalt layers, as shown in the diagram below (from Brodie and Green, 2002).

Superimposed on this bedrock sequence is a surficial profile (with a typical 'rind' layering) arising from the weathering of the bedrock sequence, and having a configuration that generally mimics (follows) the topography. The 'rind' layers are irregular in thickness and depth (determined largely by location on the topographic slope, location and underlying geology from which they are derived) and variably stratified with regard to their degree of weathering.

Each of the above systems has its own unique influence on the way recharge water (rainfall) runs off or infiltrates into the subsurface, thus creating two dominant individual but hydrogeologically connected groundwater systems. There is likely to be a zone where the two systems overlap and where groundwater flow will be affected in part by each layering system. This zone produces a complex groundwater flow pattern, and one which is extremely difficult to interpret, predict and model.

From Brodie and Green (2002)

Regional groundwater flow in the Lismore Basalt generally follows the regional dip of the lava beds, that is, to the north west. Brodie and Green (2002) indicate that this is the case in the north of the area. Cut 19 is located within that area. South of Newrybar, the regional groundwater flow in the area is reported to be both to the east and north west. The exact line of dissection is not clear from their report. Cut 6 is located within that area. Given that the proposed cuts are relatively shallow, however, it is expected that the local groundwater system will be more influenced by surficial topography than underlying geological structure.

Each groundwater flow regime has the potential to give rise to spring flow occurrences at the surface, largely where zones/layers of lower permeability 'daylight' (outcrop) at the ground surface. Anecdotal evidence suggests that some springs are perennial, while others appear to be permanent features. Springs are also often associated with zones of slope instability. The hydrogeological characteristics are significant to the development of landslides.

Spring locations identified by the *Bureau of Rural Sciences* (BRS, Brodie and Green, 2002) are shown on Figure 2 and 3 for Cut 6 and Cut 19. Verification of spring occurrences was included in this scope of works due to some uncertainty about the location and nature of inferred and identified springs, specifically the potential for there to be more springs than that shown by the BRS mapping.

The perched aquifer systems which arise from the near surface weathering profile stratification (the shallow 'rind' referred to earlier) are more likely to give rise to local spring occurrences (particularly where the transition to fresher bedrock outcrops). They contrast with the deeper layered bedrock 'aquifers' (within the lava flow sequence) which are more likely to give rise to regional spring occurrences (potentially at greater distance from the applicable recharge area/s). In particular, the regional springs are likely to occur on the western slopes of hill slopes (stratigraphically down-dip) and, most likely, on the western slopes of the Alstonville Plateau. For the two cuts selected for detailed study, it has been found that the local groundwater system is more influenced by surficial topography than underlying geological structure. i.e. groundwater flow within the top of the deeper

groundwater flow system is in a locally eastward direction toward the perennial surface waterway. Flow within the regional groundwater system/s is largely to the west.

The level of the groundwater table along the preferred route is expected to be variable depending on groundwater flow system/s operating within the layered basalt. Monitoring of groundwater bores by various public authorities indicates that the groundwater levels in the 'shallow' aquifers respond to rainfall events exceeding about 100 mm per week, while the 'deeper' aquifers show little response to rainfall.

F-4 CONCEPTUAL GROUNDWATER MODEL

F-4.1 Introduction

A *conceptual groundwater model* (CGM) is a simplified representation of the key features of the physical system and its behaviours. A CGM attempts to identify the parameters and features that are characterising the system. The CGM is also the precursor to the numerical groundwater model, the predictive tool used to calculate likely future effects which may arise after the road cuttings are excavated and constructed, which is described in Appendix H.

Previous conceptualisation of the system had identified a lack of critical data¹ required for predictive groundwater modelling of the system. The data from the recent hydrogeological investigation has provided updated information necessary to refine the CGM for Cut 6 and Cut 19 and associated numerical simulations.

F-4.2 Conceptual Geological and Hydrogeological Setting

The conceptual geological setting has been described in Section F-2. The key component of the CGM is that the site groundwater system is organised in two key systems:

• Shallow Groundwater Flow System: A local shallow (or upper) groundwater aquifer within the weathered soil and rock (the regolith). The investigation borehole cores show that this shallow system comprises a sequence of variably weathered bedrock material within which remnant layers of less weathered rock are interspersed. By virtue of the geological variability (extremely to moderately weathered and laterally variable zones) of this sequence, it is likely to host numerous localised perched subsystems (largely unconfined). Groundwater flow within this complex geological system will be equally complex, with flow being dominantly horizontal in one areal location and dominantly vertical in an adjacent location. An analogy would be that the groundwater 'cascades' from one perched system to another, eventually reaching the deeper bedrock system below. Superimposed of this groundwater flow system is a moderately to densely spaced fracture pattern which is also likely to influence groundwater flow; and

¹ Water table and deeper aquifer hydraulic head profile, geological and hydrogeological boundaries and composition, soil permeability, hydraulic gradients, potential for surface water-groundwater interaction at respective creeks.

• Deeper Groundwater Flow System/s: A local deeper groundwater system investigated, largely within the fractured porosity, is pervasively developed within moderately weathered to fresher basaltic lava flow sequences present at depth. Present within this stacked lava flow sequence are rare interbedded zones of moderately to highly weathered basalts, and some amygdaloidal, scoriaceous and fossil soil horizons. These interbeds are laterally variable, thickening and thinning out with lateral extent. Groundwater flow is dominated by the fracture plane porosity/permeability, and to a lesser extent the interbed layers. On a macroscopic scale the groundwater flow is likely to behave in a porous media fashion (anisotropic, and controlled by the more dominant horizontal fracture and bedding planar features). On a mesoscopic (1m – 10m width) and microscopic scale flow is likely to be tortuous and highly variable. The deeper aquifer/s behaves as a confined or semiconfined aquifer system.

Note: the *Regional Aquifer* was not considered in the numerical modelling due to its scale (>100km) relative to the local scale of each of the cutting (<100m). Any groundwater diverted from the local aquifer systems is typically largely reintroduced at locations (streams, creeks) immediately adjacent to the cutting/s considered with respect to their impacts.

Each system is characterised by different hydraulic properties. Their recharge from rainfall and their contribution to springs or creeks are also different. The interactions between the aquifers can also vary spatially. It is noted, though, that for the two cuts selected for detailed study groundwater flow within the top of the deeper groundwater flow system is in a locally eastward direction toward the perennial surface waterway.

Each system is characterised by different but variable hydraulic properties. The rainfall recharge (infiltration) to the two systems is complex and dependant on the topographic situation, thickness and density of the interbedded layers, vertical and horizontal hydraulic conductivity (permeability) contrasts and the overprint of a moderate to dense, tight fracture pattern of preferential flow pathways. As a consequence of these features, groundwater flow, both horizontal and vertical, is similarly controlled by low or moderate locally contrasting permeability and, hence, similarly characterised tortuous pathways. The mechanism and magnitude of the contribution that these groundwater systems make to the local springs or creeks is consequentially inferred to be highly variable and seasonally controlled.

This dual groundwater system has a number of important characteristics which greatly affect the estimation of the nature and magnitude of the impact on spring and creek flow.

- Groundwater flow within the shallow flow system ('aquifer') is largely responsible for the creek baseflow and springs, and it is likely that this is a local effect (not regional).
- The shallow aquifer system/s are intermittently to fully saturated (flow may be perennial, intermittent or may cease periodically), particularly in the upper sections of the topography (the hill top areas).
- A consistently downward groundwater flow gradient between the shallow and the deeper flow systems is generally present along the transects. The exception to this general rule is noted adjacent to and beneath the creek lines.

- Moderate to strong hydraulic connectivity between the shallow and deeper aquifer systems is evident along the creek alignments. This is particularly evident where the transect across the valley flat areas of Cut 6 suggesting that the creek down-gradient of Cut 6 is a 'making' creek environment (where the groundwater system discharges and supplements the creek flow).
- Spring occurrences, away from the creek alignments, whilst rare, are largely due to hydrogeologically differing rock layer (having contrasting hydraulic conductivities) daylight at the ground surface, that is, groundwater flow within the shallow aquifer is driven by favourable hydraulic gradients to emerge at the surface).

Note: Groundwater level measurements collected during this stage of investigations occurred immediately after a period of above average rainfall. As a consequence, the CGM interpretation may be skewed towards an abnormally wet case-study condition. A further round of sampling would be required during dry weather conditions to confirm the relationship between the creek and springs, and the shallow aquifer.

F-4.3 Conceptual Groundwater Model Characteristics

On the basis of the geological and hydrogeological evidence collected a CGM was built for each of the two cuts. Refer to Figure 4 and 5 for the CGM at Cut 6 and Cut 19, respectively. Common characteristics of the conceptual models for each cuts and individual characteristics are highlighted in Table F-1 below.

Cut 6	Cut 19

Two groundwater systems: a *shallow* system (potentially perched, however, likely to be a transient phenomenon since shallow monitoring wells on top of hillslopes were dry on each monitoring occasion) within the weathered rock and a *deeper* groundwater system within the less weathered, tightly fractured rock and/or fresh rock. It is noted that the monitoring wells installed in the deeper aquifer at each of the transects are only relatively shallow and appear more influenced by surficial topography than underlying structural geology i.e. the hydraulic gradient of the "deep" aquifer reflects local and intermediate flow systems rather than regional-scale groundwater flow system.

The groundwater level profile from hilltop to base of creek levels suggests that groundwater in the shallow aquifer system in the *upper portion* of the profile (the hill-top zone) is largely absent or infrequently saturated (i.e., it is dry or perennial, responding substantially to recharge events). This is not the case in the *lower portion* of the profile where groundwater in the shallow aquifer is present and persistent (from a location at the midpoint of the hill slope).

The land use is predominantly grazed pasture, the lower half of Cut 6 being occupied by the road and private garden land (grass, trees and shrubs). Typical of the land usage for the alignment, and as such, recharge to both of the groundwater systems is impacted by local land

Conceptual Groundwater ModelF8Tintenbar to EwingsdaleAppend	06622140_076 ix F February 2008		
Cut 6	Cut 19		
development (enhanced by land-clearing, and c	cropping and grazing).		
On the hill slopes, seepage points develop occurrence of intermittent or temporary sprin shallow aquifer system (perched) and/or farmin	in response to rainfall events. This localised g flows reflect the perennial behaviour of the ng activities such as erosional control features.		
The surface water chemistry is similar in bo typically sodio-chloro-sulphate (Na-Cl-SO ₄) w	th Cut 6 and Cut 19 areas, namely, they are ater types.		
No evidence of hydraulic connection between the two aquifer systems in the upper part of the hill apparent since the shallow system is unsaturated. The deeper aquifer system/s are considered to be effectively hydraulically confined or semi-confined in nature. Full connectivity of the two aquifer systems occurs only in the valley floor (creek) areas of the profile.	No proven hydraulic connection between the two aquifer systems again, since the shallow system is unsaturated. The deeper aquifer system is considered as a confined or semi- confined system. The valley floor area is narrow, and deeper aquifer and shallow aquifer water levels are similar suggesting good connectivity between the aquifers. The aquifer connection, however, has not been confirmed by groundwater sampling of the aquifers at the valley floor due to access		
The hydraulic head of both the shallow and deeper groundwater system adjacent the creek is below the base of the creek. This implies that groundwater is not discharging directly to the creek bed, however, is contributing to the creeks' hyporheic ² zone. The hyporheic zone is the region beneath and lateral to a stream bed, where there is mixing of shallow groundwater and surface water.	Creek supplied by shallow aquifer base flow via the hyporheic zone and surface catchment run-off. Across the creek, the groundwater levels in both the shallow and deeper aquifers are lower than the creek bed, suggesting possible supply of the creek to the groundwater system.		

² The hyporheic zone is the critical interface between groundwater and surface water environments and is shown to be a dynamic ecotone (a transitional zone between two communities containing the characteristic species of each) characterised by steep, hydraulic, chemical and biological gradients.

Cut 6	Cut 19
Hydraulic conductivity (permeability) of the shallow aquifer and soil permeability on the	Hydraulic conductivity (permeability) of the shallow aquifer and overlying soil
lower of the transect profile (the creek valley	permeability consistent through the transect
portion of the profile, much greater than at	profile:
the hilltop portion of the profile:	K _{deeper aquifer} of the order of 10^{-7} to 10^{-9} m/s
K deeper aquifer of the order of 10^{-6} to 10^{-8} m/s	K _{shallow aquifer} of the order 10^{-7} m/s
K _{shallow aquifer} or the order 10^{-5} to 10^{-7} m/s	

The shallow groundwater aquifer system is considered to contribute to the hyporheic zone of the creek system. The creeks are also supplied by local catchment run-off during rainfall events.

The deeper groundwater aquifer studied appears to be in hydraulic connection with the hyporheic zone of the creek, especially where the shallow aquifer is very thin. The hydraulic data collected suggests there is a minor downward hydraulic gradient between the shallow (alluvium) and the deeper aquifer, suggesting that both creeks are losing creeks at the selected sections. Hydrogeochemical testing implies, however, that local shallow groundwater flow is dominant since shallow aquifer water type matches the water type of surface samples collected.

The regional aquifer is inferred to be in hydraulic connection with the overlying Deeper Aquifer.

Appendix G Numerical Groundwater Model

TABLE OF CONTENTS

SECTION

PAGE

G-1	INTRO	DDUCTION	1
G-2	ASSE	SSMENT OF POTENTIAL IMPACT ON SEEPAGE USING	
NUME	ERICAL	. GROUNDWATER MODELLING	1
	G-2.1	Model Construction	1
	G-2.2	Model Boundary Conditions and Model Calibration	2
	G-2.3	Model Simulation	4
G-3 SUM		IARY OF OUTCOMES	7
	G-3.1	Conceptual Spring Flow and Numerical Modelling Outcomes	7
	G-3.2	Risk of Impact to Spring Flow and Groundwater Flow	7

APPENDIX G - TABLES

Table G- 1: Model Hydraulic Functions and Descriptions:	2
Table G- 2: Model Calibration – Calibrated Hydraulic Parameters	3
Table G-3: Model Calibration Results – Modelled Vs Observed	4
Table G- 4: Model Simulation Results – Predicted Change in Hydraulic Head (m)	6
Table G- 5: Model Simulation Results – Predicted Change in Relative Flux ¹ (%))	6

G-1 INTRODUCTION

Golder has undertaken predictive numerical simulation of changes to the hydrogeological system operating along the proposed T2E road alignment.

This section provides the methodology used by Golder to simulate groundwater flow and seepage, and investigation of potential impact on groundwater spring flow along the alignment.

G-2 ASSESSMENT OF POTENTIAL IMPACT ON SEEPAGE USING NUMERICAL GROUNDWATER MODELLING

G2

Appendix G

G-2.1 Model Construction

A cross-section seepage analysis model was developed for two examples of the proposed cuttings associated with this phase of the upgrade to the Pacific Highway. These models were constructed based on the CGM presented in Appendix F and represent a typical example of the type of cutting proposed (Cut 6), where the base of the cutting is above the water table, and a more extreme example of the type of cutting proposed (Cut 19), where the base of the cutting is expected to intersect the water table. It is noted that there are 26 cuts/tunnel proposedassociated with the upgrade, therefore these analyses are meant to provide indicative impacts that can be used to infer expected behaviour at these specific locations and elsewhere.

Figure G1 presents the implemented CGM for Cut 6, including the model mesh and model boundary conditions, discussed below. Figure G5 presents the implement CGM for Cut 19, including the model mesh and model boundary conditions.

Each model was divided into various regions according to the interpreted geological transects; detailed review of borehole logs; hydraulic head data and the results of hydraulic test analyses. Three idealised hydrogeologic units were adopted, as follows:

Shallow Aquifer:

- a silty clay unit, representing the completely weathered to extremely weathered basalt. This unit is of moderate to low permeability; and
- a clayey sandy silt unit, representing alluvium material adjacent the creek bed at each cutting. This unit is of moderate permeability.

Deeper Aquifer:

• a slightly weathered rock or unweathered rock unit. This unit is of low permeability.

An appropriate saturated/unsaturated hydraulic description of each of these units was obtained from the SEEP /W database and modified as required. Table G-1 presents a summary of the hydrogeological units identified from the CGM and the corresponding hydraulic conductivity (HC) functions adopted from the SEEP /W database.
Model Unit Name	Description from Fieldwork	SEEP Database Function No.
Shallow (silty clay)	Clayey SILT; Silty CLAY; CLAY; Clayey Gravelly SILT	#16
Shallow (clayey sandy silt)	Silty CLAY; Clayey SILT;	#19
Deeper (slightly weathered rock)	BASALT	#20

Table G-1: Model Hydraulic Functions and Descriptions:

It is noted that the hydraulic function selected for the slightly weathered rock unit was chosen to encapsulate the free draining nature of this unit. The adopted HC functions for each of the hydrogeologic units are presented at the end of this appendix.

G-2.2 Model Boundary Conditions and Model Calibration

Following model construction, various hydraulic parameters were adjusted and selected boundary conditions to fit the observed data, assuming that the conceptual model for each cut is reasonable. The adjustable parameters include the saturated hydraulic conductivity and the vertical to horizontal anisotropy of hydraulic conductivity. It is noted that simulations were conducted assuming steady state conditions, therefore the value of porosity was not adjusted during model calibration. An appropriate default value for porosity was adopted, however, not presented here.

For each modelled profile a fixed head boundary condition was applied at the right hand edge of the model domain. The value assigned to each fixed head boundary condition was guided by the groundwater level in the deeper aquifer and adjusted during model calibration, where appropriate. A recharge rate of 5% (equivalent to 85 mm/yr) was selected for all simulations, being typical for the terrain and its location and consistent with the estimated vertical saturated hydraulic conductivity (soil permeability) derived from Talsma Infiltrometer testing. The adopted model boundary conditions for Cut 6 are presented in Figure G-1. The adopted model boundary conditions for Cut 19 are presented in Figure G5.

The calibration dataset was based on water table and potentiometric levels obtained during the July 2007 sampling round. Table G-2 presents a summary of the calibrated model parameters. Table G-3 presents a comparison between modelled and observed hydraulic head (water table level or potentiometric level, depending on whether the water table is intersected by the screened interval of the piezometer). Figure G-2 illustrates the modelled water table profile of existing conditions at Cut 6. Figure G-6 presents the modelled water table profile of existing conditions at Cut 19.

Unit No.	Unit	Parameter	Cut 6	Cut 19
1	Shallow (silt clay)	KSat ¹	2.0E-07 m/s	2.0E-07 m/s
1		K z/h ²	1:5	1:5
2	Shallow (clayey	KSat	2.0E-06 m/s	1.0E-06 m/s
	sandy silt)	K z/h	1:2.5	1:2.5
	Deeper (slightly	KSat	2.0E-08 m/s	2.0E-08 m/s
3	weathered rock)	K z/h	1:5	1:5
N/A	N/A	CHBC ³	83.0 mAHD	50.5 mAHD

Table G-2: Model Calibration – Calibrated Hydraulic Parameters

¹ Calibrated saturated hydraulic conductivity (m/s); ² Calibrated vertical to horizontal anisotropy; ³ Calibrated constant head boundary condition.

Transect	Borehole	Hydraulic Head (mAHD)		Difference (m)
		Modelled	Observed ¹	
Cut 6	BH2000 (Shallow)	Dry	Dry	N/A
	BH1021 (Deeper)	100.7	101.8	- 1.1 m
	BH2002 (Shallow)	Dry	Dry	N/A
	BH2001 (Deeper)	99.1	98.0	+ 1.1 m
	BH2004 (Shallow)	87.8	87.1	+ 0.7 m
	BH2003 (Deeper)	88.0	85.6	+ 2.4 m
	BH2006 (Shallow)	85.9	85.8	+ 0.1 m
	BH2005 (Deeper)	86.2	85.9	+ 0.3 m
Cut 19	BH2010 (Shallow)	Dry	Dry	N/A
	BH2009 (Deeper)	77.5	76.4	+ 1.1 m
	BH2012 (Shallow)	Dry	Dry	N/A
	BH2011 (Deeper)	72.6	74.4	- 1.8 m
	BH2014 (Shallow)	64.6	63.9	+ 0.7 m
	BH2013 (Deeper)	62.8	61.2	+ 1.6 m
	BH2016 (Shallow)	Dry	Dry	N/A
	BH2015 (Deeper)	55.7	54.7	+ 1.0 m

Table G-3 : Model Calibration Results – Modelled vs Observed

¹ Observation data derived from July 2007 sampling round.

From Table G-3 and Figure G-2 and G-6, respectively, the observed hydraulic head along transect Cut 6 is satisfactorily matched by model simulation. Similarly, the observed

Golder Associates

hydraulic head along transect Cut 19 is also satisfactorily matched by model simulation. The hydraulic parameters used in calibration model simulations are presented in Appendix B and also match satisfactorily the field testing and measurement results, as presented in Appendix B. The calibration model simulations therefore appear to be a reasonable representation of the observed data and conceptual model.

G-2.3 Model Simulation

The calibrated models presented in Section G-2.2 were then modified to represent the proposed cut geometry at both Cut 6 (a typical example of the type of cutting proposed in this project) and Cut 19 (a more extreme example of the type of cutting proposed in this project). Figure G-3 presents the model mesh and implemented conceptual model for Cut 6. Figure G7 presents the equivalent model for Cut 19.

Model prediction simulations were undertaken assuming the calibrated hydraulic parameters would not change associated with the proposed works. In addition, the Constant Head Boundary Condition (CHBC) in Cut 6 and Cut 19 was assumed to not change with the proposed works. The unit flux boundary condition, representing a fraction of the long term average rainfall recharge (5%), was also retained, however, was adapted to apply to the surface of the updated geometry. The updated boundary conditions for each of the models are presented in Figure G3 and Figure G7, respectively.

Given the above assumptions, each of the models was executed in predictive mode. Figure G4 presents the results of prediction model simulations of Cut 6. Figure G8 presents the results of prediction model simulations of Cut 19. Table G-4 presents the predicted change at each of the monitoring well reference points presented in Table G-3.

From Figure G4, prediction model simulations suggest that a seepage face is not expected to develop at Cut 6, given this combination of recharge and hydraulic parameters. From Figure G8, prediction model simulations suggest that a seepage face may develop at Cut 19, given this combination of recharge and hydraulic parameters. Table G-5 presents a comparison of the modelled flux rate, before and after the proposed excavations. It is noted that a steady state recharge rate of 5% was fixed, it being typical of the terrain and location, and calibration undertaken with respect to level by adjusting appropriate hydraulic parameters. Accordingly, the relative impact of changes on cross-sectional flux should be only considered in Table G-5 rather than absolute values since flux is linearly dependent on recharge rate. It is noted that the model is 1 m deep with respect to the page.

Transect Borehole		Hydraulic Hea	Dradiated Change		
		Modelled Existing		(m)	
	BH2000 (Shallow)	Dry	Dry	N/A	
	BH1021 (Deeper)	100.7	101.0	+ 0.3 m	
	BH2002 (Shallow)	Dry	Dry	N/A	
t 6	BH2001 (Deeper)	99.1	99.2	+ 0.1 m	
C	BH2004 (Shallow)	87.8	87.8	$\pm 0.0 \text{ m}$	
	BH2003 (Deeper)	88.0	88.0	$\pm 0.0 \text{ m}$	
	BH2006 (Shallow)	85.9	85.9	$\pm 0.0 \text{ m}$	
	BH2005 (Deeper)	86.2	86.2	$\pm 0.0 \text{ m}$	
	BH2010 (Shallow)	Dry	Dry	N/A	
Cut 19	BH2009 (Deeper)	77.5	75.5	- 2.0 m	
	BH2012 (Shallow)	Dry	Dry	N/A	
	BH2011 (Deeper)	72.6	66.8	- 5.8 m ¹	
	BH2014 (Shallow)	64.6	Dry	N/A	
	BH2013 (Deeper)	62.8	60.4	- 2.4 m	
	BH2016 (Shallow)	Dry	Dry	N/A	
	BH2015 (Deeper)	55.7	54.2	- 1.5 m	

Table G-4:	Model Sim	ulation Results	- Predicted	Change in H	lydraulic Head	(m)
						· ·

¹ The proposed cut almost intersects the screened interval of this piezometer.

Table G-5: Mode	el Simulation Result	s – Predicted	Change in I	Relative Flux ¹	(%))
-----------------	----------------------	---------------	-------------	----------------------------	------

Transect —	Calibrated Model		Simulatio	Predicted	
	Input Flux (m ³ /s)	Output Flux (m ³ /s)	Input Flux (m ³ /s)	Output Flux (m ³ /s)	- Change (%)
Cut 6	4.7E-07 m3/s	4.7E-07 m3/s	4.7E-07 m3/s	4.7E-07 m3/s	± 0%
Cut 19	4.9E-07 m3/s	5.2E-07 m3/s	3.8E-07 m3/s	3.8E-07 m3/s	- 25%

¹ model calibrated to steady state conditions, assuming a rainfall recharge rate of 5% of annual average rainfall.

From Table G-4, the predicted extent of change in the water table profile in the typical proposed cut, Cut 6, is limited to the near vicinity of the proposed cut. The predicted extent of change in the water profile and potentiometric surface of the more extreme proposed cut,

Cut 19, is significant. The impact is highest at mid-slope on the profile, where impact to potentiometric level is of the order of 2 to 3 m.

From Table G-5, the predicted relative change in simulated groundwater flux is an approximate 25% decline for Cut 19. The predicted relative change to simulated flux for Cut 6 is essentially negligible.

Model simulation results suggest that the more extreme type of excavation proposed, of which Cut 19 is an example, may lead to a reduction in groundwater contribution to the hyporheic zone of the down-gradient surface waterway.

G-3 SUMMARY OF OUTCOMES

G-3.1 Conceptual Spring Flow and Numerical Modelling Outcomes

There are many potential spring locations identified at each of the study sites. Site inspection suggests that many of these locations are associated with local surface drainage features and are unlikely to be 'groundwater springs', in the formal definition, and accordingly are less likely to be affected by changes in the up-gradient groundwater catchment geometry.

Numerical simulations suggest that there is a potential that a seepage face may develop at Cut 19, the example of the more extreme type of cutting proposed. However, the numerical simulations suggest that a seepage face is unlikely to develop at Cut 6, the example of the typical type of cutting proposed, where cutting does not intersect the water table.

G-3.2 Risk of Impact to Spring Flow and Groundwater Flow

For the transects which are the subject of this detailed investigation, there is little evidence to suggest that there are groundwater springs at these sites. The only verified spring is at Cut 6 (SP13), which is on the opposing side of the groundwater divide and is therefore not influenced by the proposed cut. The water table profile presented in Figure G-4 for Cut 6 and Figure G-5 for Cut 19 indicates that the water table does not intersect the current ground surface at Cut 6 or Cut 19 and therefore springs cannot form. This conclusion is supported by site inspection works.

Numerical modelling, however, suggests that there is likely to be impact to the phreatic surface where a seepage face develops, such as in Cut 19. As such, at locations other than those studied where cuts extend below the water table, there remains a potential to affect nearby groundwater springs.

It was found that groundwater is not discharging directly to surface waterways at Cut 6 and Cut 19, however, the groundwater system is contributing to hyporheic zone of those waterways. That contribution is dominated by shallow aquifer contribution. Accordingly,

consideration may need to be given to the water quality of road runoff from the highway that may recharge the groundwater system

From a quantitative perspective, an environmental objective for this project is to reduce the potential adverse impacts on groundwater contribution to the hyporheic zone of surface waterways, down-gradient. Accordingly, consideration could be given to methods to enhance recharge to groundwater adjacent the proposed highway, to offset potential impact associated with development of a seepage face. This is discussed further in Section 7.5 of the report.

Groundwater dependant ecosystems (GDEs) near the valleys may be affected whenever the water flow in the creek is lessened or the shallow groundwater table lowered. GDEs are least likely to be found on the hill slopes, as the hill slopes are mostly grazing land and GDEs are more likely to be found closer to creeks.

Appendix H Important Information about your Geotechnical Engineering Report

Important Information About Your

Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims and disputes.

The following information is provided to help you manage your risks.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfil the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared solely for the No one except you should rely on your client. geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. And no one - not even you - should apply the report for any purpose or project except the one originally contemplated.

A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include : the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, *do not rely on a geotechnical engineering report* that was :

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical change that can erode the reliability of an existing geotechnical engineering report include those that affect :

- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,
- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. *Geotechnical Engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by : the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions *only* at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgement to render an *opinion* about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgement and opinion. Geotechnical engineers can finalise their recommendations only by observing actual subsurface conditions revealed during construction. *The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.*

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognise that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure contractors have sufficient time to perform additional study. Only then might you be in a position to give contractors the best information available

to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognise that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce such risks, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labelled "limitations", many of these provisions indicate where geotechnical engineers responsibilities begin and end, to help others recognise their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a geoenvironmental study differ significantly from those used to perform a geotechnical study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. Do not rely on an environmental report prepared for someone else.

Rely on Your Geotechnical Engineer for Additional Assistance

Membership in ASFE exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE member geotechnical engineer for more information.

8811 Colesville Road Suite G106 Silver Spring, MD 20910 Telephone: 301-565-2733 Facsimile: 301-589-2017 emoil: infoliaste.org www.csfe.org

Copyright 1998 by ASFE, Inc. Unless ASFE grants written permission to do so, duplication of this document by any means whatsoever is expressly prohibited. Re-use of the wording in this document, in whole or in part, also is expressly prohibited, and may be done only with the express permission of ASFE or for purposes of review of scholarly research.