Woolgoolga to Ballina Pacific Highway upgrade Phased Resource Reduction for Koala

Wardell Road – Phase 4

September 2017

THIS PAGE LEFT INTENTIONALLY BLANK

Woolgoolga to Ballina Pacific Highway Upgrade Phased Resource Reduction for Koala -Wardell Road phase 4 report.

Final Report 29 September 2017

Sandpiper Ecological

1/94 Main Street Alstonville Sandpipereco.com

Document Review

Date	Version	Status	Sent to	Represent	Delivered Format	Dispatched By
5 September 2017	А	Draft	B. Taylor	Sandpiper	MSW	D. Rohweder
6 September 2017	1	Draft	S. Wilson	Sandpiper	MSW	D. Rohweder

Document Distribution

Date	Version	Status	Sent to	Represent	Delivered Format	Dispatched By
28 September 2017	2	Final	S. Wilson	Pacific Complete	MSW	D. Rohweder
29 September 2017	3	Final	S. Wilson	Pacific Complete	MSW	D. Rohweder

Project team:

- Dr D. Rohweder (field survey, reporting)
- Dr B. Taylor (field survey, review)
- Dr S. Fitzgibbon (site inspection)
- Mr G. McDonald (field survey)
- Mr N. Priest (field survey)
- Mr S. Rohweder (field survey)
- Mr M. Jenkins (field survey)
- Mr Z. English (field survey)

Report prepared for:

Pacific Complete

© Sandpiper Ecological Surveys 2017 ABN: 82 084 096 828

PO Box 401 ALSTONVILLE NSW 2477 P 02 6628 3559 | E david@sandpipereco.com.au

Cover Photo: Adult koala, Munro Wharf Road control site.

Disclaimer:

This report has been prepared in accordance with the scope of services described in the contract or agreement between Sandpiper Ecological Surveys (ABN 82 084 096 828) and Pacific Complete. The report relies upon data, surveys and measurement obtained at the times and locations specified herein. The report has been prepared solely for Pacific Complete and Sandpiper Ecological Surveys accepts no responsibility for its use by other parties. Sandpiper Ecological Surveys accepts no responsibility or liability for changes in context, meaning, conclusions or omissions caused by cutting, pasting or editing the report.

Table of contents

1. In	ntroduction	1
2. St	tudy area	1
3. Me	ethods	4
3.1	Tree collaring	4
3.2	Ring-barking	5
3.2	2.1 Trees with diameter between 100 and 300mm	5
3.2	2.2 Continuous canopy trees	6
3.2	2.3 Ring-barking koala feed trees	6
3.2	2.4 Dieback of ring-barked trees	7
3.3	Koala population monitoring	7
3.3	3.1 Koala surveys	7
3.3	3.2 Scat collection	7
3.4	Camera monitoring	9
4. Re	esults1	0
4.1	Collaring	
4.2	Ring-barking1	
4.3	2.1 Tree dieback	
4.3	Camera monitoring1	
4.3	Koala population surveys1	
4.3	3.1 Koala surveys	
4.3	3.2 Scat Collection	
4.4	Koala specialist site inspection1	6
5. D	iscussion	n
5.1	Collaring	
5.2	Ring-barking	
5.3	Koala use of the study area	
5.3 5.4	Impact of PRR on koalas	
6. R	eferences 2	2
Apper	ndix A – Field data 2	4

List of tables

Table 1: The Phased resource Reduction schedule applied at the Wardell Road koala hotspot.	2
Table 2: Number of trees and stems collared and feed trees ring-barked during the PRR program at Wardell Road. * = Includes co-dominant stems; ** = includes 13 trees with a DBH<300mm not included in "Total Trees Managed" tally	
Table 3: Number of trees marked during phase 1 of the PRR program at Wardell Road.	11
Table 4: Proportion of canopy dieback recorded in three species of tree at the Wardell Road hotspot1	1
Table 5: Koala records obtained during the Phase 1 (baseline) koala surveys at Wardell Road. pr = probable identification; po = possible identification	17

List of figures

Figure 1: Location of Wardell Road koala hotspot in relation to Laws Point koala hotspot and the Tucki Tucki scat collection control site
Figure 2: Location of scat sample sites within the Tucki Tucki Control site
Figure 3: Distribution and status of all trees (DBH >300mm) within the Wardell Road site following Phase 4 of the PRR program13
Figure 4: Distribution and status of all trees (DBH >300mm) within the Wardell Road site following Phase 4 of the PRR program14
Figure 5: Status of koala feed trees within the Wardell Road hotspot area following Phase 4 of the PRR program
Figure 6: Number of koalas recorded during paired day and night surveys during phase 1 (surveys 1-3), 2 (survey 4), 3 (survey 5) and 4 (survey 6) at Wardell Road17
Figure 7: Distribution of koala records following Phase 4 of the PRR program at the Wardell Road hotspot site. Note: no koalas were recorded in phase 418
Figure 8: Distribution of koala records following Phase 3 of the PRR program at the Wardell Road hotspot site

List of plates

Plate 1: Procedure used to install collars during the Phased Resource Reduction for koalas
Plate 2: Example of a loosely fitted collar with a gap around the trunk to reduce a koalas grip on the collar and allow small scansorial fauna to access trees
Plate 3: Combined chicken wire and HDPE fence installed around two clusters of large fig trees that could not be collared5
Plate 4: Ring-barking method applied at Wardell road hotspot site. Left = aggressive ring-barking of forest red gum; Right = passive ring-barking of swamp oak
Plate 5: Scats being collected at the Tucki Tucki control site9
Plate 6: Camera installed (left side of tree above collar) on a collared feed tree at Wardell Road. The camera is monitoring use of an adjacent feed tree, which also contains a camera aimed at the tree shown. The bottom of collars on feed trees was painted to assist with identifying scratch marks
Plate 7: Dieback of forest red gums: Left = 19 days after ring-barking; Right = 18 days after ring- barking11
Plate 8: Dieback of broad-leaved paperbark (center) and weeping bottlebrush (right) 19 days after ring-barking

1. Introduction

The Woolgoolga to Ballina (W2B) Pacific Highway Upgrade Koala Management Plan (RMS 2016) proposed a staged approach to clearing in two koala hotspots in Section 10 of the upgrade. Koala hot spots are situated at Laws Point and Wardell Road. The staged approach is referred to as 'phased resource reduction' (PRR) and involves the gradual reduction of food resources by ring-barking and collaring trees to facilitate the voluntary movement of koalas by replicating the effects of a severe drought. The PRR method aims to reduce stress-induced impacts associated with clearing activities by encouraging koalas to move from the clearing area into adjacent habitat. In addition to collaring and ring-barking trees, the project also involves population surveys to monitor koala numbers throughout the PRR process. The purpose of the population monitoring is to monitor and assess the impact of the project-wide goal of zero koala mortalities is achieved (RMS 2016). Other components added to the project include camera monitoring of collared feed trees to record koala response to collaring, inspections of collars for scratch marks, collection and analysis of koala scats collected at hot spots and control sites to monitor cortisol levels, and an additional population survey (Laws Point only).

Due to logistical issues, the PRR program has been staged with work commencing at Laws Point in March 2017 and at Wardell Road in May 2017. Staging provided the opportunity to apply lessons learnt at Laws Point to Wardell Road. Sandpiper Ecological (Sandpiper) was contracted by Pacific Complete to implement the PRR program.

The program includes five phases (Table 1):

- Phase 1 (Wks 1-3): Tag and map all trees to be collared/ring-barked and undertake six population surveys.
- Phase 2 (Wks 4-5): Collar 40%, ring-bark 20% of trees with continuous canopy to feed trees, ring-bark non-collared trees (DBH 100-300mm), and conduct two population surveys.
- Phase 3 (Wks 6-7): Collar a further 40% of trees, continue ring-barking non-collared trees (DBH 100-300mm), and conduct two population surveys.
- Phase 4 (Wks 8-10): Collar the remaining 20% of trees, finalise ring-barking, and conduct two population surveys.
- Phase 5 (Wks 11-17): Following clearing of the hotspot site undertake eight population surveys.

The following report details the results of Phase 4 of the PRR program at the Wardell Road hotspot site. Phase 4 was undertaken between 14 and 25 August 2017. Results of phases 1, 2 and 3 have been reported on previously (see Sandpiper Ecological 2017a, b & c). The following report is penultimate in the PRR program and consequently does not include comment on the success of the program or recommendations for future phased resource reduction programs. These will be addressed in the phase 5 report at completion of the PRR program.

2. Study area

The PRR study area was comprised of three sample sites - Laws Point koala hotspot, Wardell Road koala hotspot and Tucki Tucki scat collection control site (Figure 1). Wardell Road and Laws Point are situated in Section 10 of the Woolgoolga to Ballina (W2B) Pacific Highway Upgrade and are approximately 4km apart. The Section 10 alignment traverses a relatively flat to undulating agricultural valley, which begins north of the Richmond River at Laws Point and runs to the west of the township of Wardell before connecting with the existing highway alignment at Coolgardie Road.

Wardell Road koala hotspot is located approximately three kilometres west north west of Wardell on the New South Wales north coast. Access to the site is via Wardell Road through RMS acquired land, adjoining private properties and Hillside Lane. The study site stretches for 1.3 kilometres and encompasses chainages 152200 to 153500 of the W2B. The survey area includes the subject site – section of W2B alignment between the abovementioned chainages, and study area – vegetation adjoining the subject site that contains eight, 1.3 km long koala survey transects.

Laws Point is located approximately five kilometres south west of the town of Wardell on the New South Wales north coast. Access to the site is via Back Channel Road following the northern bank of the Richmond River. The study site stretches north from the Richmond River for one kilometre and encompasses chainages 146 000 to 147 000.

Tucki Tucki is used as a control site for collection of fresh koala scats. Scat collection has occurred at two primary locations, Munro Wharf/Tucki Tucki Road and Hazlemount Lane. Tucki Tucki includes a mix of low ridges and floodplain that supports numerous koalas. The area includes numerous feed trees planted within local road corridors adjoining farmland.

Phase	Duration	Dates	Tasks completed
1	66 days	1 May 2017 to 5 July 2017	 Survey & mark project boundary. Tag and map all trees to be collared & ring-barked. Conduct 3 diurnal and 3 nocturnal population surveys.
2	18 days	10 to 27 July 2017	 Collar 40% of trees. Ring-bark 100-300mm DBH trees. Ring-bark continuous canopy trees. Conduct 1 diurnal and 1 nocturnal population survey.
3	14 days	28 July – 11 August 2017	 Collar a further 40% of trees. Conduct 1 diurnal and 1 nocturnal population survey. Discuss options for additional ring-barking with Pacific Complete.
4	12 days	14 to 25 August 2017	 Collar remaining 20% of trees. Install fence around fig trees Ring-bark additional feed trees and trees around the quad-bike track. Conduct 1 diurnal and 1 nocturnal population survey. Inspect site to assess dieback of ring-barked trees. Download images & inspect collars for scratches.
5	Not commenced		

 Table 5: The Phased resource Reduction schedule applied at the Wardell Road koala hotspot.

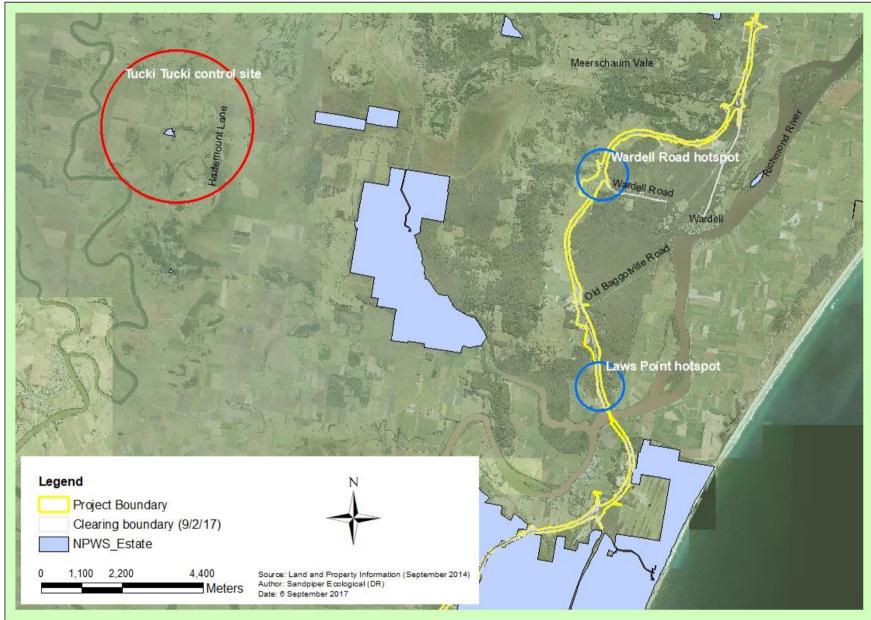


Figure 1: Location of Wardell Road koala hotspot in relation to Laws Point koala hotspot and the Tucki Tucki scat collection control site.

3. Methods

3.1 Tree collaring

Phase 4 requires that all remaining trees with a Diameter at Breast Height (DBH) of >300mm have 600mm wide collars installed between one and two meters above ground. Seventy-six percent (76%) of trees were collared in Phases 2 and 3 at Wardell Road, leaving 24%, or 74 trees and 92 stems to collar in Phase 4. Collars were made of 1.5mm thick High Density Polyethylene (HDPE). HDPE was used as it is lightweight, has a slippery surface, can withstand punctures, is UV stabilised, and is easy to cut and handle in a field situation. Collar size was determined for each tree by measuring the circumference at 1m (hollow-bearing trees) or 2m (non-hollow-bearing trees) above ground. A three-step ladder was used to install collars at 2m (Plate 1). An additional 100mm was added to each circumference to allow for imperfections in the trunk and to provide a loose fit (Plate 2). Collars were attached using three or four 50-60mm screws. Each tree was inspected for koalas prior to collar installation. Collars were installed loosely around trunks to provide an unstable surface for koalas and enable small scansorial fauna to move up and down trunks. Phase 4 collaring was undertaken on 22 August 2017.

Large fig trees were excluded by installing a 1.2m high chicken wire and star picket fence around the perimeter. The fence was situated approximately 100mm above ground and had a single strand of plain wire installed around the base and a 600mm wide strip of HDPE attached to the upper section (Plate 3).

Plate 1: Procedure used to install collars during the Phased Resource Reduction for koalas.

Plate 2: Example of a loosely fitted collar with a gap around the trunk to reduce a koalas grip on the collar and allow small scansorial fauna to access trees.

Plate 3: Combined chicken wire and HDPE fence installed around two clusters of large fig trees that could not be collared.

3.2 Ring-barking

3.2.1 Trees with diameter between 100 and 300mm

All trees that did not pose a safety risk to the public / workers, infrastructure (power lines, dwellings, fences) or were within 10m of the Limit of Clearing (LoC) boundary were ring-barked in phase 2. The arborist undertaking ring-barking determined if a tree was safe to ring-bark. Ring-barking was undertaken by Blue Knob Tree Fellas and Sandpiper Ecological and was conducted using a chainsaw and axe. Trees were ring-barked by making two parallel cuts, approximately 100mm apart in the trunk. Bark and sapwood was then removed with an axe. The depth of chainsaw cuts varied

depending on trunk diameter. Trees with a DBH between 100 and 200mm had bark only removed, with the sapwood left intact. This was done due to concern about the stability of trees if sapwood was removed, particularly from tall thin swamp oaks (*Casuarina glauca*). If deemed safe by the arborist an aggressive approach was adopted to ring-barking trees between 200 and 300mm DBH to maximise the likelihood of defoliation with the 6-week period between phase 2 and clearing (Plate 4).

Initial phase 4 ring-barking was undertaken between 18 and 20 July 2017, with follow-up ring-barking of 100-300mm diameter trees around the quad-bike track on 18 August 2017. The majority of trees were ring-barked in phase 2, with an additional 10 trees, near the quad-bike track re-assessed by an arborist, and ring-barked in phase 4.

Plate 4: Ring-barking method applied at Wardell road hotspot site. Left = aggressive ring-barking of forest red gum; Right = passive ring-barking of swamp oak.

3.2.2 Continuous canopy trees

The Koala Management Plan specified that 20% of trees that had a continuous canopy to primary and secondary koala feed trees shall be ring-barked in phase 2 (RMS 2016). An assessment of koala feed trees identified seven trees that had continuous canopy to 19 other trees (Table A1, Appendix A). Fifteen connecting trees surrounding three feed trees were either within 10m of the LoC boundary, had a power-line or dwelling within their fall zone, and were therefore unsuitable to be ring-barked. Two feed trees (and connecting canopy trees) had a DBH <300mm and would therefore be ring-barked anyway. The remaining two feed trees with one connecting tree each equated to 10% of continuous canopy trees within the Wardell Road hotspot site.

Due to the small number of continuous canopy trees available to be ring-barked, and results from Laws Point, which suggested that ring-barking feed trees, in conjunction with collaring, is a suitable means of altering koala behaviour, it was decided to ring-bark as many feed trees as possible within the constraints imposed by infrastructure and the LoC boundary.

3.2.3 Ring-barking koala feed trees

At Wardell Road, all primary koala feed trees that did not have a dwelling, power line, or road within their fall zone, or were within 10m of the LoC boundary were ring-barked. Feed trees with a DBH <200mm had bark only removed and trees with a DBH >200mm had bark and sapwood removed. Expanding ring-barking to include koala feed trees within 10m of the LoC boundary was discussed with Pacific Complete and subsequently rejected prior to completion of Phase 4.

3.2.4 Dieback of ring-barked trees

Following completion of Phase 4, dieback of ring-barked trees was assessed by randomly sampling 30 ring-barked trees, 10 swamp oak, 10 forest red gum and 10 broad-leaved paperbark. The proportion of the canopy showing evidence of dieback (brown or partially brown leaves) and the degree of ring-barking (sapwood removed or bark only removed) was assessed visually. The survey was undertaken on 6 September 2017.

3.3 Koala population monitoring

3.3.1 Koala surveys

One paired (diurnal & nocturnal) koala population monitoring survey was conducted in Phase 4 and follows on from the three diurnal, and three nocturnal koala population monitoring surveys conducted in Phase 1 (Sandpiper Ecological 2017d) and the paired samples conducted in Phase 2 and Phase 3 (Sandpiper Ecological 2017e & f). Nocturnal surveys preceded diurnal surveys, which were conducted on the following day. Surveys were completed by one team of three and included one person walking the transect centre line flanked by a person 20m away on each side. Nocturnal surveys were conducted with handheld spotlights (Led Lenser P14) and all personnel were equipped with binoculars for both nocturnal and diurnal surveys. Each 1.3km transect took approximately 30 minutes to complete. The Phase 4 population survey was conducted on 23 and 24 August 2017. Phase 1 population surveys, at Wardell Road, were conducted on 30 and 31 May, 5 and 6 June, and 3 and 4 July 2017, Phase 2 on 26 and 27 July and Phase 3 on 9 and 10 August 2017.

Landowners were contacted within 48 hours of undertaking surveys. One landowner refused permission to access their property from the outset and another landowner refused permission after completion of phase 1. This effectively meant that the northern 400m of transects 1 and 2 could not be traversed. The subject section of both transects did not contain primary koala feed trees and their omission was unlikely to effect results.

Data recorded during each survey included; date, survey number, observer names, start and end time, temperature range, cloud cover, wind, rain and moon phase. Data collected on each koala observed included: date, time, transect number, coordinates (easting & northing GDA 94), tree species including DBH, temperature, weather, sex, breeding status, and health (i.e. signs of conjunctivitis or cystitis). Each tree with a koala was marked with red and white tape so it could be relocated the following day.

3.3.2 Scat collection

To support a study being undertaken by Roads and Maritime Services and Sydney University on cortisol levels in koalas fresh koala scats were collected at Wardell Road (impact site) and Tucki Tucki (control site) following each diurnal survey. At Wardell Road, each tree containing a koala, or where a koala was recorded the previous night, was revisited and a search conducted for fresh koala scats. Fresh scats were identified by their colour (paler green) and presence of a moist coating. Scats were subsequently collected from the same number, and if possible same sex ratio, of koalas at Tucki Tucki (Figure 2). The Tucki Tucki site was visited on the afternoon following the diurnal koala survey and trees containing suitable koalas were marked. These trees were revisited the following morning and fresh scats collected. Where possible between five and six scats were collected from each tree and scat collection was conducted during dry weather. The age of scats (i.e. fresh or >1 day old) was noted

control site Fucki Tucki Nature Reserve Legend ٠ Scat sample site Tucki Tucki Nature Reserve 420 840 Source: Land and Property Information (Septe Author: Sandpiper Ecological (DR) Date: 6 September 2017 210 nber 2014) Meters

on the datasheet. Control site scats for the Wardell Road sample were collected from Hazlemount Lane (Figure 2).

Figure 2: Location of scat sample sites within the Tucki Tucki Control site.

Data collected at each scat collection site included; location (easting & northing GDA 94), tree species, weather (temperature, cloud cover, rainfall), time since last sunny day, tree size, koala behaviour,

koala health, date, and observer. Scats were collected with a toothpick and placed immediately into a Styrofoam block positioned in a plastic container (Plate 5). Scats were then stored in a cool dry location.

Plate 5: Scats being collected at the Tucki Tucki control site.

3.4 Camera monitoring

To obtain data on how koalas respond to collars six (Scoutguard) motion-activated infra-red cameras were installed at six trees - four forest red gums and two swamp mahoganies - on 4 August 2017. These trees were in a cluster used by a male koala. Cameras were installed 3-4m above ground and angled downwards to video koala (& other fauna) interacting with collars. The proximity of feed trees and orientation of cameras enabled more than one tree to be monitored by each camera. Three trees were monitored on both sides and three on one side only. Cameras were set to record 20 seconds of video with a 10 second quiet-period (Plate 6). Images were downloaded and batteries changed on 25 August and 6 September. The base of each collar on a cluster of feed trees near chainage 152900 was painted to assist in identifying scratch marks. Each collar in the cluster of feed trees near chainage 152900 was inspected for koala scratch marks when downloading images.

Plate 6: Camera installed (left side of tree above collar) on a collared feed tree at Wardell Road. The camera is monitoring use of an adjacent feed tree, which also contains a camera aimed at the tree shown. The bottom of collars on feed trees was painted to assist with identifying scratch marks.

4. Results

4.1 Collaring

A total of 70 trees containing 92 stems were collared in phase 4 (Table 2; Figures 3 & 4). This included 64 non-HBT (Hollow Bearing Tree) and four HBT's. Six feed trees with a DBH>300mm were ringbarked and 14 were collared in phase 4 (Figure 5). No koalas were recorded in trees immediately prior to collaring or ring-barking. Where possible, collaring extended outwards from the centre of the alignment and extended for the entire length of the Wardell Road hotspot area. The total number of trees managed within the Wardell Road hotspot site was 310 (Table 3). Palms were typically not collared or ring-barked, with the exception of three cabbage palms (*Livistona australis*).

Table 6: Number of trees and stems collared and feed trees ring-barked during the PRR program at WardellRoad. * = Includes co-dominant stems; ** = includes 13 trees with a DBH<300mm not included in "Total Trees</td>Managed" tally.

Phase	Total trees managed	Total Trees collared	Non HBT collared	HBT collared	Feed trees collared	Total Stems collared*	Feed trees ring-barked
Two	119 (38%)	114	113	1	6	150	18**
Three	117 (38%)	117	115	2	18	162	0
Four	74 (24%)	68	64	4	14	92	6

 Table 7: Number of trees marked during phase 1 of the PRR program at Wardell Road.

Phase	Total trees to be managed	Total Stems to be managed	Non HBT	НВТ
One	310	413	303	7

4.2 Ring-barking

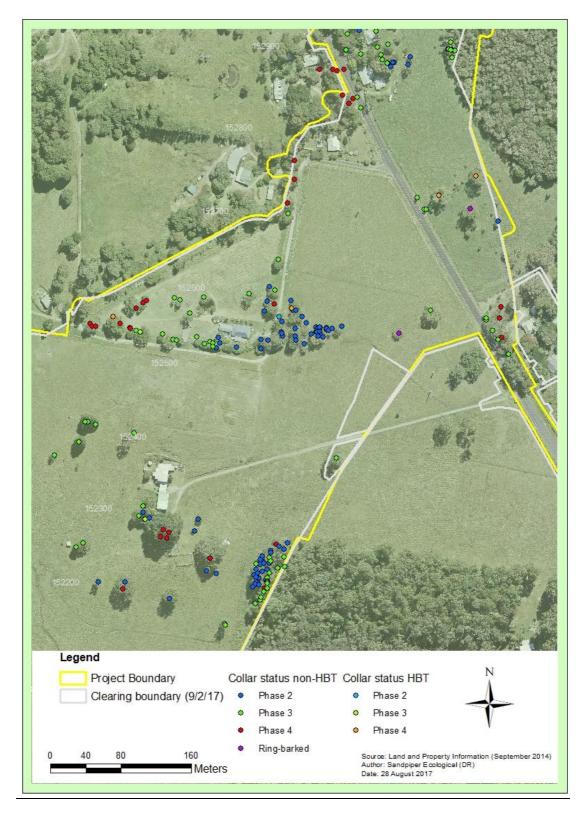
Six feed trees, all forest red gum (*Eucalyptus tereticornis*), and 10 swamp oak (*Casuarina glauca*) were ring-barked in Phase 4. Five feed trees were ring-barked at the northern end of the subject site, and one on the central flat (Figure 5).

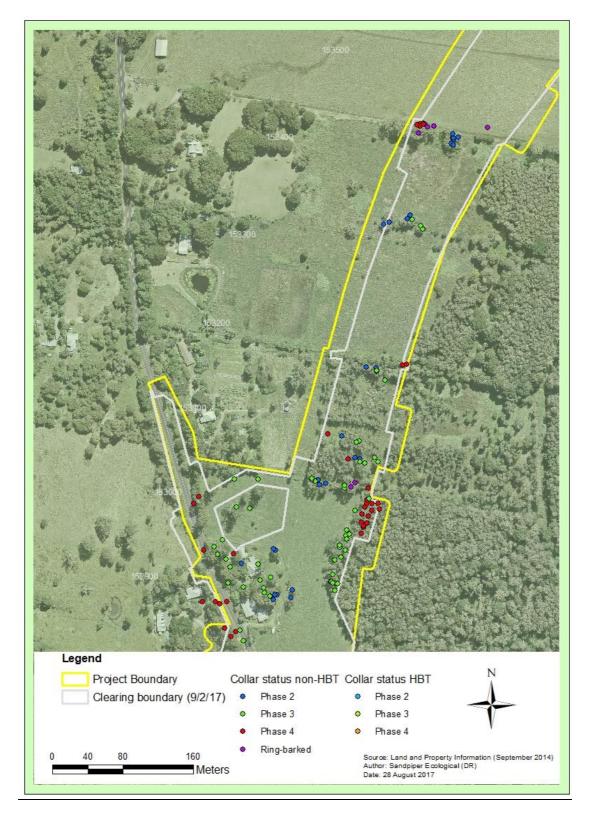
4.2.1 Tree dieback

There is considerable variation in the extent of foliage dieback between species of tree ring-barked (Table 4). Dieback of forest red gums and paperbarks has generally been rapid and complete (Plates 7 & 8). The tree species with the highest proportion of trees with almost total foliage dieback was broad-leaved paperbark, 100% of trees with 90-100% dieback, followed by forest red gum with 60% of trees with 90-100% dieback. The remaining forest red gums sampled displayed 11-50% dieback (30% of trees sampled), and <10% dieback (10% of trees sampled). No swamp oaks showed evidence of foliage dieback. The 30% of forest red gums that showed 11-50% dieback all had a DBH less than 230mm. Six out of the seven red gums with a DBH >300mm had 90-100% foliage dieback (Table A2, Appendix A).

Tree species	% of canopy showing evidence of dieback						
Thee species	0	<10	11-50	51-90	91-100		
Forest red gum		10	30		60		
Broad-leaved paperbark					100		
Swamp oak	100						

Table 8: Proportion of canopy dieback recorded in three species of tree at the Wardell Road hotspot.


Plate 7: Dieback of forest red gums: Left = 19 days after ring-barking; Right = 18 days after ring-barking.


Plate 8: Dieback of broad-leaved paperbark (center) and weeping bottlebrush (right) 19 days after ring-barking.

4.3 Camera monitoring

No koalas have been recorded trying to climb collared feed trees monitored at the Wardell Road hotspot (Table A5).

Figure 3: Distribution and status of all trees (DBH >300mm) within the Wardell Road site following Phase 4 of the PRR program.

Figure 4: Distribution and status of all trees (DBH >300mm) within the Wardell Road site following Phase 4 of the PRR program.

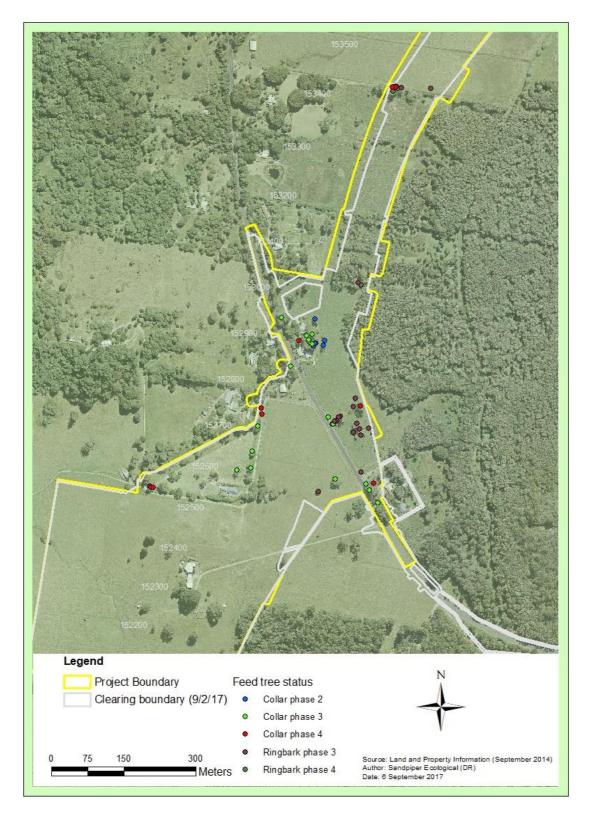


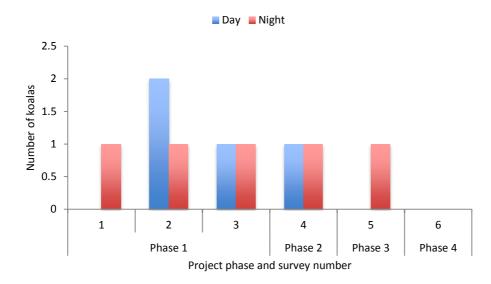
Figure 5: Status of koala feed trees within the Wardell Road hotspot area following Phase 4 of the PRR program.

4.3 Koala population surveys

4.3.1 Koala surveys

Phase 4 koala population surveys were conducted on 23 and 24 August 2017. No koalas were recorded during the Phase 4 survey. In previous surveys between one and two individuals have been recorded (Figure 6). A cluster of records occurs west of the upgrade alignment at approximate chainage 152840, with a second cluster on the east side of Wardell Road at approximate chainage 152600 (Figures 7 & 8). At least two koalas have been recorded west of Wardell Road, a male and female, and one female has been recorded east of Wardell Road. Different koalas are predicted to use the two clusters and a total of three koalas have been recorded in the study area during the sample period. A resident recorded two individuals on the east side of Wardell Road following completion of the phase 1 (baseline) surveys. If this record is correct then four koalas utilise the project area.

The limited point locality data precludes any assessment of home range. Based on field observations it is tentatively suggested that individuals using habitat east of Wardell Road occupy home ranges extending further east into areas of Swamp Forest and Heath, and individuals using habitat west of Wardell Road utilise habitat further west, on the eastern slope of Buckombil Mountain. The adult male recorded west of Wardell Road is suspected to be the same individual recorded opportunistically directly across the road prior to commencement of baseline surveys (Figure 6).


A total of nine koala records have been made during the five paired (day & night) population surveys (Table 5). Five records have occurred at night, and four during the day. No ear-tagged individuals have been recorded. Seven records have been of individuals in forest red gum (*Eucalyptus tereticornis*), with one each in narrow-leaved redgum (*E. seeana*) and flooded gum (*E. grandis*). Three of the nine koala records at Wardell Road have occurred inside the LoC boundary. All koalas recorded at the Wardell Road hotspot have shown signs of disease (i.e. brown or wet bottom and/or conjunctivitis). Weather conditions during each population survey are summarised in Table A6, Appendix A.

4.3.2 Scat Collection

Scats were collected from each koala sighted at the Wardell Road site, with equivalent samples collected from Hazlemount Lane at the Tucki Tucki control site (Tables A7 & A8, Appendix A). Between 3 and 6 scats have been collected for each sample and no rainfall was recorded 24hrs prior to scat collection.

4.4 Koala specialist site inspection

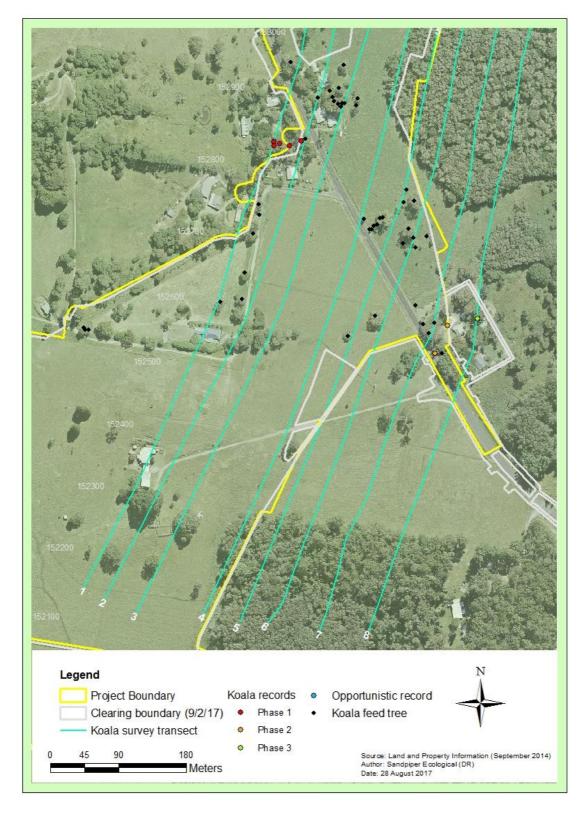

Dr Sean Fitzgibbon inspected the Wardell Road hotspot site on Wednesday 26 July, following completion of the Phase 2 collaring and ring-barking. The inspection involved a foot-based traverse of the site looking at tree collars and ring-barked trees and discussing relevant issues. The koala specialist confirmed that the PRR process was being implemented in accordance with the Koala Management Plan.

Figure 6: Number of koalas recorded during paired day and night surveys during phase 1 (surveys 1-3), 2 (survey 4), 3 (survey 5) and 4 (survey 6) at Wardell Road.

Table 9: Koala records obtained during Phase 1 to 4 koala surveys at Wardell Road. pr = probable identification;po = possible identification.

Date	Record No.	Same individual as	D/N	Time	Transect	Phase	Easting	Northing	Tree sp.
30/5/2017	WK1		N	1743	1	1	542533	6798776	Forest red gum
5/6/2017	WK2		N	1739	1	1	542533	6798776	Forest red gum
6/6/2017	WK2.1	WK2	D	0945	1	1	542533	6798770	Forest red gum
6/6/2017	WK3	WK1	D	0945	1	1	542569	6798777	Forest red gum
3/7/17	WK4		N	1751	1	1	542553	6798770	Narrow-leaved red gum
4/7/17	WK4.1	WK4	D	1010	1	1	542540	6798773	Forest red gum
26/7/17	WK5		N	1926	7	2	542763	6798531	Forest red gum
27/7/17	WK5.1	WK5	D	1051	8	2	542747	6798494	Flooded gum
9/8/17	WK6	WK5	N	1933	8	3	542803	6798541	Forest red gum

Figure 7: Distribution of koala records following Phase 4 of the PRR program at the Wardell Road hotspot site. Note: no koalas were recorded in phase 4.

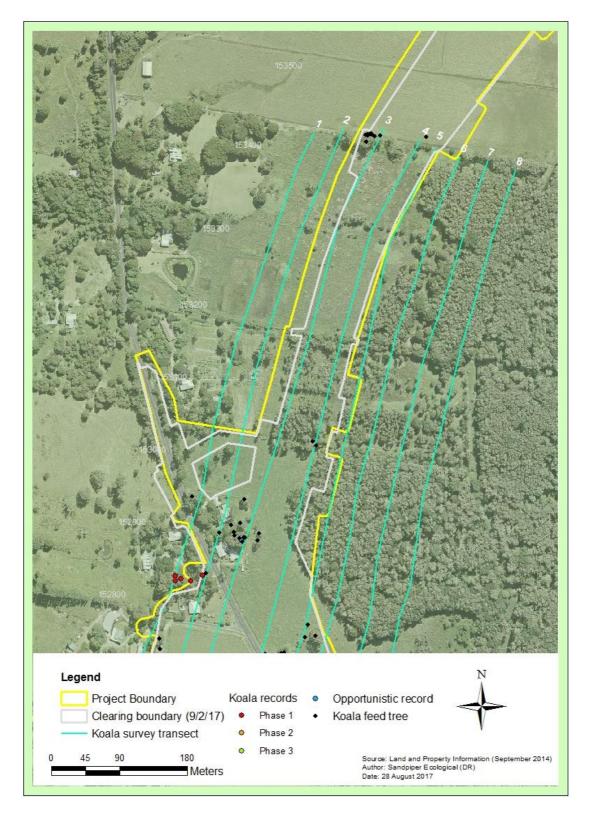


Figure 8: Distribution of koala records following Phase 3 of the PRR program at the Wardell Road hotspot site.

5. Discussion

5.1 Collaring

A total of 299 trees were collared at the Wardell Road hotspot. Based on initial results from Laws Point, collaring is an effective means of excluding koalas from trees (Sandpiper Ecological 2017c). No evidence of koalas (i.e. either scratch marks on collars, or video footage) trying to climb collared trees has been recorded at Wardell Road. Lack of evidence of koalas trying to access collared feed trees is consistent with results of population monitoring, which suggests most koala activity occurs on the alignment edge (refer Section 5.3).

5.2 Ring-barking

Ring-barking has proven to be an effective means of causing rapid dieback of feed trees and simulating the effects of a severe drought. The effectiveness of ring-barking has varied between tree species and success is strongly influenced by whether both bark and sapwood are removed. Trunk diameter constrained the extent to which a tree can be ring-barked without it falling over. At Wardell Road the presence of roads, tracks, powerlines, and dwellings further constrained ring-barking of 100-300mm diameter trees and feed trees >300mm. Trees with a trunk diameter <200mm that have bark and sapwood removed are more likely to fall over during moderate wind. This concern was exacerbated at Wardell Road due to the height and narrow trunk diameter of swamp oak, which were the dominant species in floodplain areas. Concern about the structural integrity of ring-barked swamp oaks meant that a conservative approach was adopted to ring-barking that species.

Eucalyptus spp. displayed the fastest and most consistent response to ring-barking, followed by *Melaleuca* spp. Some *Eucalyptus* spp. displayed noticeable leaf wilt two days after ring-barking (Sandpiper Ecological 2017f). Given that *Eucalyptus* spp. represents the primary dietary component for koalas (see Melzer *et al.* 2014) the effect of ring-barking on foliage dieback is encouraging for future resource reduction programs.

If all tree species within the Wardell hotspot are considered collectively then ring-barking has been ineffective in causing foliage dieback on a majority of trees. This is primarily due to the numerical dominance of swamp oak and the inability to remove bark and sapwood from many trees. Effectiveness of ring-barking may have also been influenced by high soil moisture throughout the PRR program. Above average rainfall occurred in the period March to July 2017 and the floodplain sections of the Wardell hotspot were flooded on two occasions during this period. High soil moisture means that trees are less water stressed, particularly smaller trees that rely more on soil moisture (Dawson 1996). The combination of high soil moisture and limited sapwood removal explains the absence of foliage dieback in swamp oaks.

5.3 Koala use of the study area

Koala population monitoring results indicate that the Wardell study area is used occasionally by at least three koalas, with all records occurring near the outer edges of the alignment. Records from a local resident indicate that a fourth individual may be present. Notwithstanding, the absence of concurrent records makes it difficult to be definitive about koala numbers and a maximum of two individuals have been recorded in the study area at the same time. The distribution of records provides further evidence that the Section 10 alignment is situated between areas of important koala habitat (Ecosure 2014).

Population monitoring identified two areas used by koalas, one to the east, and one west of the alignment. The distribution of records correlates with the koala activity model developed by Ecosure and Biolink (2015). Based on records obtained during the PRR monitoring program koalas recorded east and west of the alignment are predicted to range further east and west, away from the alignment. The low frequency of records within the two areas supports the assumption that home ranges extend away from, rather than through, the alignment. Records of koalas on the floodplain east of Wardell would be likely if home ranges extend through the alignment. The home range of one adult male may encompass Wardell Road, although that individual was only recorded east of the road on one occasion. Known koala habitat occurs on the eastern slope of Buckombil Mountain, west of the alignment, and in the large area of heath and swamp forest east of the alignment.

The three koalas recorded in the study area have all displayed obvious signs of cystitis (i.e. wet dripping bottom) and one female also showed evidence of conjunctivitis. These unhealthy individuals pose a risk to other koalas in the population (OEH 2011). Ecosure *et al.* (2016) state, "chronic clinical expression of disease appeared to be primarily restricted to localities between Meerschaum Vale and Lynwood". The village of Meerschaum Vale is situated immediately north of Wardell. Whilst there is likely to be a distinction between chronic disease recorded by Ecosure *et al.* (2016) and our general observations of disease the results obtained at the Wardell Road hotspot suggest that the frequency of disease in the population extends south of Meerschaum Vale.

Indeed, a sick adult female koala was captured whilst trying to cross Wardell Road, south of the study area, on 6 July 2017. That individual was captured by Geolink ecologists and transferred to the Friends of the Koala (FOK) approved vet in Lismore. The veterinary assessment indicated that the koala had a number of health issues and it was euthanised on 6 July 2017. Subsequently an adult female koala captured on 20 September in the south east intersection of the alignment and Wardell Road was also euthanised due to chronic disease. The apparent high incidence of unhealthy koalas at Wardell Road is consistent with the Population Viability Analysis (PVA), which highlighted disease as a potential factor limiting population size through low fecundity (Niche 2016).

The absence of koalas in Phase 4 is attributed to a combination of factors, including:

- normal movement within an individuals home range;
- location of sample area in relation to koala home ranges; and
- low koala abundance in the study area.

5.4 Impact of PRR on koalas

The intent of the PRR program was to simulate severe drought conditions by reducing the resource available in the impact zone. The reduction in food would subsequently force koalas to move elsewhere. Severe, long-term, droughts have been shown to negatively affect koala populations and force individuals to move to critical habitats, such as riparian zones and permanent waterholes (Seabrook *et al.* 2011; Gordon *et al.* 1988). The notable effect of severe drought is substantial population decline. It is unlikely that the PRR program would have a similar effect on the local koala population as impacts are localised, and likely to affect only part of a koala's home range. This is contrary to severe droughts, which cover extensive areas and entire populations. In the PRR context koalas should respond to reduced food availability by using other unaffected parts of their home range.

Ring-barking seems to be an effective means of reducing food availability and when uniformly applied to a designated area could cause a drought like response by koalas. In contrast, collaring does not

simulate drought conditions as foliage remains alive. The cues used by koalas to select feed trees include a combination of vision, smell, and experience. Tree selection is known to change between seasons (Ellis *et al.* 1995) and several studies have shown that koalas select individual trees within a stand, repeatedly visiting these in preference to neighboring conspecifics (Hindell 1985). The strong tree fidelity displayed by individuals is associated with tree size and foliar chemistry, specifically avoidance of plant secondary metabolites (Moore & Foley 2005; Moore *et al.* 2005).

Ring-barking, causing foliage dieback, is likely to elicit a more distinct response by koalas than collaring as foliage in collared trees remains alive. Even though koalas cannot climb collared trees they can still see and smell foliage. The PRR program has focused on collaring larger trees that are more likely to support koalas, and ring-barking smaller (<300mm diameter) trees that may be used less frequently. At Wardell, an attempt was made to increase ring-barking of larger koala feed trees but this was constrained by surrounding infrastructure and most large feed trees were collared, including those known to be used by koala. Further comment on the merits of collars verses ring-barking or a combination of both methods will be included in the phase 5 report.

Large forest red gums displayed noticeable leaf wilt two days after being ring-barked, resulting in a rapid loss of foraging resource. The speed of dieback following ring-barking would exceed that caused by a severe drought, which may take months. Staged ring-barking over a period of 5-6 weeks would buffer the immediate impact of foliage wilt but would still cause dieback at a faster rate than a drought.

6. References

Dawson, T. E. (1996). Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic lift. *Tree Physiology:* **16**, 263-272.

Ecosure (2014). *Woolgoolga to Ballina koala preconstruction surveys*. Report prepared for Roads and Maritime Services.

Ecosure and Biolink (2015). *Koala population survey: Woolgoolga to Ballina Pacific Highway Upgrade: section 10 (Wardell to Coolgardie)*. Report prepared for Roads and Maritime Services.

Ecosure, Biolink, Sunshine Coast University (2016). *Woolgoolga to Ballina Pacific Highway Upgrade* (Section 10): Koala disease analysis. Report prepared for Roads and Maritime Services.

Ellis, W. A. H., Melzer, A., Green, B., Newgrain, K., Hindell, M. A. & Carrick, F. N. (1995). Seasonalvariation in water flux, field metabolic-rate and food-consumption of free-ranging koalas (Phascolarctos-Cinereus). *Australian Journal of Zoology:* **43**, 59-68.

Gordon, G., Brown, A. S. & Pulsford, T. (1988). A koala (*Phascolarctos cinereus* Goldfuss) population crash during drought and heatwave conditions in south-western Queensland. *Austral Ecology:* **13**, 451-461.

Hindell, M. A., Handasyde, K. A. & Lee, A. K. (1985). Tree species selection by free-ranging koala populations in Victoria. *Wildlife research:* **12**, 137-144.

Melzer, A., Cristescu, R., Ellis, W., Fitzgibbon, S. and Manno, G. (2014). The habitat and diet of koalas (*Phascolarctos cinereus*) in Queensland. *Australian Mammalogy:* **36**, 189-199.

Moore, B. D. & Foley, W. J. (2005). Tree use by koalas in a chemically complex landscape. *Nature:* **435**, 488-490.

Moore, B. D., Foley, W. J., Wallis, I. R., Cowling, A., Handasyde, K. A. (2005). Eucalyptus foliar chemistry explains selective feeding by koalas. *Biology Letters:* DOI: 10.1098/rsbl.2004.0255

Niche Environment and Heritage (2016). *Ballina Koala Plan: koala population viability analysis of the proposed Pacific Highway Upgrade near Wardell, NSW*. Report prepared for NSW Roads and Maritime Services.

OEH (2011). *Code of practice for injured, sick and orphaned koalas*. State of NSW and Office of Environment and Heritage, Sydney.

RMS (2016). *Woolgoolga to Ballina Pacific Highway Upgrade: Koala Management Plan*. Transport Roads and Maritime Services, NSW.

Sandpiper Ecological (2017a). *Woolgoolga to Ballina Pacific Highway Upgrade Phased Resource Reduction for Koala – phase 1 Laws Point*. Report prepared for Pacific Complete.

Sandpiper Ecological (2017b). *Woolgoolga to Ballina Pacific Highway Upgrade Phased Resource Reduction for Koala – phase 2 Laws Point*. Report prepared for Pacific Complete.

Sandpiper Ecological (2017c). *Woolgoolga to Ballina Pacific Highway Upgrade Phased Resource Reduction for Koala – phase 3 Laws Point*. Report prepared for Pacific Complete.

Sandpiper Ecological (2017d). *Woolgoolga to Ballina Pacific Highway Upgrade Phased Resource Reduction for Koala – phase 1 Wardell Road*. Report prepared for Pacific Complete.

Sandpiper Ecological (2017e). *Woolgoolga to Ballina Pacific Highway Upgrade Phased Resource Reduction for Koala – phase 2 Wardell Road*. Report prepared for Pacific Complete.

Sandpiper Ecological (2017f). *Woolgoolga to Ballina Pacific Highway Upgrade Phased Resource Reduction for Koala – phase 3 Wardell Road*. Report prepared for Pacific Complete.

Seabrooke, L., McAlpine, C., Baxter, G., Rhodes, J., Bradley, A. & Lunney, D. (2011). Drought-driven change in wildlife distribution and numbers: a case study of koalas in south west Queensland. *Wildlife Research* **38**, 509-524.

Appendix A – Field data

Feed Tree number	Species	Easting	Northing	Notes
KF1	Forest red gum	542793	6799366	C261; trees are within 10m of LoC
	Forest red gum			C263
	Forest red gum			C264
	Forest red gum			C265
	Forest red gum			C266
	Forest red gum			C267
	Forest red gum			C268
	Forest red gum			C269
	Forest red gum			C252
KF 2	Forest red gum	542830	6799356	C260; nth end
	Broad-leaved paperbark	542820	6799364	C258
KF 4	Forest red gum	542618	6798826	C173; trees have power lines within fall zone
	Swamp mahogany			C169
	Swamp mahogany			C170
	Forest red gum			C174
	Forest red gum			C175
	Fig			C172
	Forest red gum			C171
KF 5	Forest red gum	542625	6798878	C179
	Cabbage palm			C180
KF 8?	Forest red gum	542713	6798640	Two trees east Wardell rd flats.
	Forest red gum			Understorey tree
KF 9?	Forest red gum	542734	6798626	Two trees east Wardell rd flats.
	Forest red gum			Understorey tree
KF10?	Forest red gum	542742	6798535	C156; trees within front yard of 1243 Wardell Road
	Liquid amber			C157

 Table A1: Primary feed trees with continuous canopy trees at the Wardell Road hotspot.

Table A2: Data collected from 30 trees ring-barked during phase 2 and Phase 4 of the PRR program at WardellRoad. BS = bark & sapwood; BO = bark only.

Tree sp.	Number	Easting	Northing	DBH	Ring bark extent	Proportion canopy dead %	Comments
Forest red gum	C261	542793	6799365	565	BS	90	
Forest red gum	C262	542805	6799362	542	BS	95-100	
Forest red gum	C263	542795	6799363	330	BS	90	
Forest red gum	C264	542798	6799361	392	BS	90	
Forest red gum	C229	542726	6798955	375	BS	95-100	
Forest red gum	C230	542719	6798955	588	BS	0-5	
Forest red gum	H7	542716	6798664	1300	BS	100	
Forest red gum	NA	542724	6798652	228	BS	15	
Forest red gum	NA	542724	6798652	153	BS	15	
Forest red gum	NA	542704	6798624	223	BS	15	
Swamp oak	NA	542706	6799027	137	BO/BS	0	
Swamp oak	NA	542709	6799028	193	BS	0	
Swamp oak	NA	542732	6799030	165	BS	0	
Swamp oak	NA	542730	6799002	235	во	0	
Swamp oak	NA	542696	6798980	181	BS	0	
Swamp oak	NA	542700	6798983	230	BS	0	
Swamp oak	NA	542724	6798959	182	во	0	
Swamp oak	NA	542722	6798933	219	BS	0	
Swamp oak	NA	542726	6798881	135	во	0	
Swamp oak	NA	542691	6798889	141	во	0	
Broad-leaved paperbark	NA 1.1	542717	6798946	215	BS	70	Codominant x 3
	1.2			173	BS	95-100	
	1.3			213	BS	95-100	
Broad-leaved paperbark	NA 2.1	542718	6798903	165	BS	95-100	Codominant x 2
	2.2			225	BS	5-10	
Broad-leaved paperbark	NA	542733	6798916	183	BS	90	
Broad-leaved paperbark	NA	542733	6798916	205	BS	90	
Broad-leaved paperbark	NA	542728	6798900	235	BS	95-100	
Broad-leaved paperbark	NA	542732	6798892	196	BS	95-100	
Broad-leaved paperbark	NA	542732	6798892	155	BS	95-100	
Broad-leaved paperbark	NA	542715	6798902	231	BS	95-100	
Broad-leaved paperbark	NA 3.1	542457	6798578	194	BS	100	
Broad-leaved paperbark	NA 3.2			215	BS	100	
Broad-leaved paperbark	NA	542536	6798529	153	BS	100	

Table A3: Collared trees identified in the Wardell Road study area. Decimals (i.e. C6.1) indicate co-dominant stems.

Date	Observer	Tree number	Species	Easting	Northing	DBH	Circumference	Collar Status
15.5.17	DR & SR	C1	Forest red gum	542712	6798660	1444	4.54	Ring-barked
15.5.17	DR & SR	C6	Forest red gum	542631	6798518	499	1.57	Ring-barked
15.5.17	DR & SR	C6.1				315	0.99	No collar
15.5.17	DR & SR	C6.2				372	1.17	No collar
15.5.17	DR & SR	C6.3				236	0.75	No collar
15.5.17	DR & SR	C9	Broad-leaved paperbark	542492	6798277	963	3.02	No collar
15.5.17	DR & SR	C49	Broad-leaved paperbark	542478	6798227	445	1.4	No collar
15.5.17	DR & SR	C49.1				256	0.8	No collar
15.5.17	DR & SR	C57	Ficus watkinsoni	542360	6798286	1022	3.21	No collar
15.5.17	DR & SR	C58	Ficus watkinsoni	542367	6798284	2500	7.85	No collar
15.5.17	DR & SR	C59	Ficus watkinsoni	542369	6798291	3700	11.62	No collar
15.5.17	DR & SR	C60	Ficus watkinsoni	542363	6798294	3400	10.68	No collar
15.5.17	DR & SR	C63	Strangler fig	542416	6798261	3100	9.74	No collar
15.5.17	DR & SR	C66	Strangler fig	542317	6798226	1646	5.17	No collar
25.5.17	DR & ZE	C82	Swamp mahogany	542280	6798529	600	1.88	No collar
25.5.17	DR & ZE	C83	Swamp mahogany	542280	6798529	310	0.86	No collar
25.5.17	DR & ZE	C84	Swamp mahogany	542282	6798526	250	0.77	No collar
25.5.17	DR & ZE	C85	Swamp mahogany	542286	6798526	433	1.34	No collar
25.5.17	DR & ZE	C86	White mahogany	542314	6798529	735	2.31	No collar
25.5.17	DR & ZE	C87	Tuckeroo	542325	6798524	485	1.52	No collar
25.5.17	DR & ZE	C88	Mango	542326	6798523	310	0.97	No collar
25.5.17	DR & ZE	C88.1				370	1.16	No collar
25.5.17	DR & ZE	C90	Pink bloodwood	542332	6798546	108	3.4	No collar
25.5.17	DR & ZE	C91	Hoop pine	542340	6798553	475	1.5	No collar
25.5.17	DR & ZE	C92	Mango	542344	6798555	430	1.35	No collar
25.5.17	DR & ZE	C118	Moreton bay fig	542504	6798666	1258	3.96	No collar
25.5.17	DR & ZE	C119	Tallowwood	542512	6798693	460	1.44	No collar
25.5.17	DR & ZE	C120	Cadagi	542512	6798715	445	1.4	No collar
25.5.17	DR & ZE	C122	Grey Ironbark	542489	6798551	1010	3.18	No collar
26.5.17	DR & SR	C129.1				280	0.88	No collar
26.5.17	DR & SR	C129.2				178	0.56	No collar
27.5.17	DR & ZE	C158	Liquid amber	542748	6798513	728	2.28	No collar
27.5.17	DR & ZE	C160	Forest red gum	542746	6798535	1043	4.5	No collar
27.5.17	DR & ZE	C163	Silky oak	542747	6798548	308	0.97	No collar
27.5.17	DR & ZE	C172	Lilly pilly	542619	6798826	485	1.53	No collar
27.5.17	DR & ZE	C197	Swamp oak	542722	6798897	317	1	No collar
27.5.17	DR & ZE	C198	Broad-leaves paperbark	542725	6798904	330	1.04	No collar
27.5.17	DR & ZE	C199	Swamp oak	524726	6798911	355	1.12	No collar
27.5.17	DR & ZE	C200	Swamp oak	542725	6798906	295	0.93	No collar
27.5.17	DR & ZE	C201	Broad- leaved paperbark	542722	6798910	380	1.2	No collar
27.5.17	DR & ZE	C202	Swamp oak	542723	6798919	372	1.16	No collar
27.5.17	DR & ZE	C204	Broad-leaved paperbark	542729	6798909	295	0.95	No collar
27.5.17	DR & ZE	C205	Swamp oak	542730	6798917	456	1.44	No collar

Date	Observer	Tree number	Species	Easting	Northing	DBH	Circumference	Collar Status
27.5.17	DR & ZE	C206	Broad-leaved paperbark	542734	6798923	345	1.08	No collar
27.5.17	DR & ZE	C207	Swamp oak	542726	6798927	340	1.07	No collar
27.5.17	DR & ZE	C208	Swamp oak	542729	6798931	343	1.08	No collar
27.5.17	DR & ZE	C208.1				390	1.22	No collar
27.5.17	DR & ZE	C208.2				399	1.25	No collar
27.5.17	DR & ZE	C209	Broad-leaved paperbark	542734	6798931	300	0.95	No collar
27.5.17	DR & ZE	C209.1				235	0.74	No collar
27.5.17	DR & ZE	C210	Broad-leaves paperbark	542741	6798931	280	0.87	No collar
27.5.17	DR & ZE	C211	Swamp oak	542743	6798925	323	1.02	No collar
27.5.17	DR & ZE	C212	Broad-leaved Paperbark	542729	6798935	390	1.22	No collar
27.5.17	DR & ZE	C212.1				300	0.95	No collar
27.5.17	DR & ZE	C212.2				225	0.71	No collar
27.5.17	DR & ZE	C214	Broad-leaved paperbark	542730	6798949	250	0.78	No collar
27.5.17	DR & ZE	C214.1				148	0.48	No collar
27.5.17	DR & ZE	C214.2				180	0.57	No collar
27.5.17	DR & ZE	C214.3				340	1.08	No collar
27.5.17	DR & ZE	C214.4				144	0.45	No collar
27.5.17	DR & ZE	C224	Swamp oak	542707	6798982	321	0.98	No collar
27.5.17	DR & ZE	C229	Forest red gum	542715	6798955	388	1.25	Ring-barked
27.5.17	DR & ZE	C230	Forest red gum	542710	6798950	572	1.8	No collar
27.5.17	DR & ZE	C236	Swamp oak	542684	6799011	345	1.1	No collar
27.5.17	DR & ZE	C236.1				275	0.87	No collar
27.5.17	DR & ZE	C243	Sieber's paperbark	542774	6799090	437	1.37	No collar
27.5.17	DR & ZE	C244	White bottlebrush	542769	6799089	350	1.1	No collar
27.5.17	DR & ZE	C252	Forest red gum	542787	6799354	468	1.47	No collar
27.5.17	DR & ZE	C260	Forest red gum	542866	6799360	454	1.43	Ring-barked
27.5.17	DR & ZE	C261	Forest red gum	542793	6799365	571	1.79	No collar
27.5.17	DR & ZE	C262	Forest red gum	542805	6799362	549	1.73	Ring-barked
27.5.17	DR & ZE	C263	Forest red gum	542795	6799363	333	1.05	No collar
27.5.17	DR & ZE	C264	Forest red gum	542798	6799361	394	1.24	No collar
27.5.17	DR & ZE	C265	Forest red gum	542791	6799364	313	0.98	No collar
27.5.17	DR & ZE	C266	Forest red gum	542789	6799364	327	1.03	No collar
27.5.17	DR & ZE	C267	Forest red gum	542789	6799362	284	0.89	No collar
27.5.17	DR & ZE	C268	Forest red gum	542793	6799364	417	1.31	No collar
27.5.17	DR & ZE	C269	Forest red gum	542786	6799363	193	0.61	No collar
12.7.17	GM & SR	C270	Hoop pine	542537	6798939	725	2.28	No collar
12.7.17	GM & SR	C271	Hoop pine	542532	6798931	982	3.08	No collar
12.7.17	GM & SR	C277	Broad-leaved paperbark	542543	6798878	382	1.2	No collar
12.7.17	GM & SR	C277.1				460	1.4	No collar
12.7.17	GM & SR	C277.2				384	1.2	No collar
12.7.17	GM & SR	C283	Hoop pine 542577 6798874 896 2.81		No collar			
12.7.17	GM & SR	C284.1	340 1.07		No collar			
12.7.17	GM & SR	C284.2	300 0.94		No collar			
12.7.17	GM & SR	C284.3	430 1.35		No collar			
19.7.17	BT & ZE	C288	Forest red gum	542574	6798780	350.00	1.10	No collar
19.7.17	BT & ZE	C289	Flooded gum	542574	6798780	350.00	1.10	No collar

Date	Observer	Tree number	Species	Easting	Northing	DBH	Circumference	Collar Status
19.7.17	BT & ZE	C290	Spotted gum	542579	6798785	345.00	1.10	No collar
19.7.17	BT & ZE	C291	Swamp oak	542579	6798785	291.00	0.90	No collar
19.7.17	BT & ZE	C292	Swamp oak	542567	6798789	295.00	0.94	No collar
19.7.17	BT & ZE	C293	Swamp oak	542569	6798819	338.00	1.05	No collar
19.7.17	BT & ZE	C294	Swamp oak	542561	6798817	415.00	1.31	No collar
19.7.17	BT & ZE	C295	Swamp oak	542556	6798819	373.00	1.17	No collar
19.7.17	BT & ZE	C296	Flooded gum	542556	6798819	450.00	1.41	No collar
19.7.17	BT & ZE	C297	Tipuana tipu	542541	6798819	582.00	1.83	No collar
15.5.17	DR & SR	C4	Camphor Laurel	542744	6798646	545	1.7	Phase 2
15.5.17	DR & SR	C8	Broad-leaved paperbark	542504	6798279	555	1.74	Phase 2
15.5.17	DR & SR	C10	Broad-leaved paperbark	542485	6798270	561	1.76	Phase 2
15.5.17	DR & SR	C11	Tuckeroo	542485	6798268	350	0.95	Phase 2
15.5.17	DR & SR	C12	Broad-leaved paperbark	542500	6798272	314	0.99	Phase 2
15.5.17	DR & SR	C13	Broad-leaved paperbark	542495	6798275	356	1.12	Phase 2
15.5.17	DR & SR	C17	Strangler fig	542484	6798256	480	1.5	Phase 2
15.5.17	DR & SR	C22	Broad-leaved paperbark & strangler fig	524480	6798254	480	1.5	Phase 2
15.5.17	DR & SR	C22.1				450	1.41	Phase 2
15.5.17	DR & SR	C24	Broad-leaved paperbark	542476	6798258	346	1.09	Phase 2
15.5.17	DR & SR	C24.1				262	0.82	Phase 2
15.5.17	DR & SR	C25	Broad-leaved Paperbark	542473	6798260	310	0.97	Phase 2
15.5.17	DR & SR	C26	Broad-leaved paperbark	542476	6798264	403	1.26	Phase 2
15.5.17	DR & SR	C27	Broad-leaved paperbark	542473	6798254	368	1.16	Phase 2
15.5.17	DR & SR	C27.1				282	0.89	Phase 2
15.5.17	DR & SR	C28	Broad-leaves paperbark	542477	6798256	395	1.24	Phase 2
15.5.17	DR & SR	C29	Broad-leaved paperbark	542481	6798249	369	1.16	Phase 2
15.5.17	DR & SR	C30	Broad-leaved paperbark	542476	6798246	550	1.73	Phase 2
15.5.17	DR & SR	C34	Broad-leaved paperbark	542469	6798242	432	1.36	Phase 2
15.5.17	DR & SR	C35	Broad-leaved paperbark	542469	6798240	352	1.11	Phase 2
15.5.17	DR & SR	C36	Broad-leaved paperbark	542470	6798245	301	0.94	Phase 2
15.5.17	DR & SR	C37	Broad-leaved paperbark	542472	6798238	465	1.46	Phase 2
15.5.17	DR & SR	C38	Broad-leaved paperbark	542466	6798242	501	1.56	Phase 2
15.5.17	DR & SR	C39	Broad-leaved paperbark	542469	6798249	580	1.82	Phase 2
15.5.17	DR & SR	C40	Broad-leaved paperbark	542469	6798240	438	1.38	Phase 2
15.5.17	DR & SR	C41	Broad-leaved paperbark	542480	6798237	313	0.99	Phase 2
15.5.17	DR & SR	C43	Broad-leaved paperbark	542470	6798234	313	0.99	Phase 2
15.5.17	DR & SR	C44	Broad-leaved paperbark	542469	6798234	325	1.02	Phase 2
15.5.17	DR & SR	C45	Broad-leaved paperbark	542468	6798232	350	1.1	Phase 2
15.5.17	DR & SR	C46	Broad-leaved paperbark	542465	6798229	632	1.98	Phase 2
15.5.17	DR & SR	C46.1				395	1.24	Phase 2
15.5.17	DR & SR	C47	Broad-leaved paperbark	542472	6798231	462	1.45	Phase 2
15.5.17	DR & SR	C56	White mahogany	542370	6798215	1411	4.43	Phase 2
15.5.17	DR & SR	C61	Wavy pittosporum	542399	6798292	386	1.21	Phase 2
15.5.17	DR & SR	C62	Stag	542403	6798306	474	1.49	Phase 2
15.5.17	DR & SR	C64	Camphor laurel	542423	6798244	540	1.7	Phase 2
15.5.17	DR & SR	C65	Cheese tree	542412	6798247	443	1.39	Phase 2

Date	Observer	Tree number	Species	Easting	Northing	DBH	Circumference	Collar Status
15.5.17	DR & SR	C67	Tuckeroo	542319	6798234	307	0.97	Phase 2
15.5.17	DR & SR	C68	Unidentified sp.	542289	6798234	501	1.57	Phase 2
16.5.17	DR & SR	C71	Cypress pine	542347	6798307	818	2.57	Phase 2
16.5.17	DR & SR	C72	Cypress pine	542340	6798314	435	1.37	Phase 2
25.5.17	DR & ZE	C105	Mango	542423	6798501	291	0.92	Phase 2
25.5.17	DR & ZE	C105.1				260	0.81	Phase 2
25.5.17	DR & ZE	C105.2				307	0.98	Phase 2
25.5.17	DR & ZE	C106	Mango	542427	6798507	224	0.69	Phase 2
25.5.17	DR & ZE	C106.1				205	0.68	Phase 2
25.5.17	DR & ZE	C106.2				200	0.63	Phase 2
25.5.17	DR & ZE	C107	Mango	542426	6798513	222	0.7	Phase 2
25.5.17	DR & ZE	C107.1				370	1.17	Phase 2
25.5.17	DR & ZE	C107.2				357	1.12	Phase 2
25.5.17	DR & ZE	C107.3				230	0.71	Phase 2
25.5.17	DR & ZE	C107.4				320	1.01	Phase 2
25.5.17	DR & ZE	C108	Mango	542446	6798502	255	0.8	Phase 2
25.5.17	DR & ZE	C108.1				420	1.32	Phase 2
25.5.17	DR & ZE	C108.2				460	1.45	Phase 2
25.5.17	DR & ZE	C108.3				207	0.65	Phase 2
25.5.17	DR & ZE	C109	Mango	542474	6798500	275	0.87	Phase 2
25.5.17	DR & ZE	C109.1				264	0.82	Phase 2
25.5.17	DR & ZE	C109.2				267	0.82	Phase 2
25.5.17	DR & ZE	C109.3				208	0.65	Phase 2
25.5.17	DR & ZE	C109.4				232	0.73	Phase 2
25.5.17	DR & ZE	C109.5				230	0.72	Phase 2
25.5.17	DR & ZE	C109.6				365	1.14	Phase 2
25.5.17	DR & ZE	C110	Mango	542474	6798511	387	1.22	Phase 2
25.5.17	DR & ZE	C110.1				315	0.99	Phase 2
25.5.17	DR & ZE	C111	Grey Ironbark	542482	6798510	1015	3.18	Phase 2
25.5.17	DR & ZE	C112	Mango	542478	6798543	440	1.38	Phase 2
25.5.17	DR & ZE	C113	Mango	542481	6798554	380	1.2	Phase 2
25.5.17	DR & ZE	C115	Mango	542484	6798571	288	0.9	Phase 2
25.5.17	DR & ZE	C115.1				217	0.68	Phase 2
25.5.17	DR & ZE	C115.2				195	0.62	Phase 2
25.5.17	DR & ZE	C115.3				246	0.78	Phase 2
26.5.17	DR & SR	C123	Grey Ironbark	542497	6798519	788	2.47	Phase 2
26.5.17	DR & SR	C124	Forest oak	542499	6798515	420	1.32	Phase 2
26.5.17	DR & SR	C125	White mahogany	542498	6798518	425	1.34	Phase 2
26.5.17	DR & SR	C125.1				428	1.34	Phase 2
26.5.17	DR & SR	C126	White mahogany	542498	6798531	679	2.13	Phase 2
26.5.17	DR & SR	C127	Camphor Laurel	542508	6798555	305	0.96	Phase 2
26.5.17	DR & SR	C127.1	230 0.72		Phase 2			
26.5.17	DR & SR	C127.2				190	0.6	Phase 2
26.5.17	DR & SR	C128	Cupaniopsis spp	542511	6798544	399 1.25		Phase 2
26.5.17	DR & SR	C129	Camphor Laurel	542514	6798544	335	1.06	Phase 2
26.5.17	DR & SR	C130	White mahogany	542521	6798537	381	1.2	Phase 2

Date	Observer	Tree number	Species	Easting	Northing	DBH	Circumference	Collar Status
26.5.17	DR & SR	C131	Pink bloodwood	542513	6798523	620	1.94	Phase 2
26.5.17	DR & SR	C131.1				354	1.11	Phase 2
26.5.17	DR & SR	C131.2				283	0.89	Phase 2
26.5.17	DR & SR	C132	White mahogany	542513	6798515	685	2.15	Phase 2
26.5.17	DR & SR	C133	White mahogany	542514	6798510	634	2	Phase 2
26.5.17	DR & SR	C134	White bottlebrush	542523	6798506	576	1.81	Phase 2
26.5.17	DR & SR	C135	Broad-leaved paperbark	542531	6798517	700	2.16	Phase 2
26.5.17	DR & SR	C136	Broad-leaved paperbark	542537	6798519	420	1.32	Phase 2
26.5.17	DR & SR	C137	Pink bloodwood	542526	6798530	489	1.54	Phase 2
26.5.17	DR & SR	C138	Broad-leaved paperbark	542537	6798525	392	1.23	Phase 2
26.5.17	DR & SR	C139	Broad-leaved paperbark	542539	6798524	490	1.54	Phase 2
		C139.1				328	1.03	Phase 2
26.5.17	DR & SR	C140	Broad-leaved paperbark	542542	6798524	387	1.22	Phase 2
26.5.17	DR & SR	C141	Broad-leaved paperbark	542542	6798517	353	1.11	Phase 2
26.5.17	DR & SR	C142	Broad-leaved paperbark	542538	6798519	233	0.74	Phase 2
26.5.17	DR & SR	C143	Broad-leaved paperbark	542538	6798519	243	0.77	Phase 2
26.5.17	DR & SR	C144	Broad-leaved paperbark	542545	6798514	330	1.04	Phase 2
26.5.17	DR & SR	C145	Broad-leaved paperbark	542539	6798515	430	1.35	Phase 2
26.5.17	DR & SR	C146	Broad-leaved paperbark	542541	6798520	310	0.98	Phase 2
26.5.17	DR & SR	C147	Broad-leaved paperbark	542542	6798524	290	0.92	Phase 2
26.5.17	DR & SR	C148	Broad-leaved paperbark	542542	679853	238	0.75	Phase 2
26.5.17	DR & SR	C149	Broad-leaved paperbark	542541	6798525	302	0.95	Phase 2
26.5.17	DR & SR	C150	Broad-leaved paperbark	542549	6798524	320	1.01	Phase 2
26.5.17	DR & SR	C151	Broad-leaved paperbark	542549	6798522	435	1.37	Phase 2
26.5.17	DR & SR	C152	Broad-leaved paperbark	542549	6798523	330	1.04	Phase 2
26.5.17	DR & SR	C153	Broad-leaved paperbark	542551	6798521	257	0.81	Phase 2
26.5.17	DR & SR	C154	Broad-leaved paperbark	542555	6798523	484	1.52	Phase 2
26.5.17	DR & SR	C155	Pink bloodwood	542566	6798526	423	1.33	Phase 2
27.5.17	DR & ZE	C167	Forest red gum	542642	6798824	430	1.36	Phase 2
27.5.17	DR & ZE	C168	Forest red gum	542644	6798833	367	1.16	Phase 2
27.5.17	DR & ZE	C169	Swamp mahogany	542622	6798822	287	0.91	Phase 2
27.5.17	DR & ZE	C170	Swamp mahogany	542626	6798827	340	1.07	Phase 2
27.5.17	DR & ZE	C174	Forest red gum	542624	6798827	723	2.27	Phase 2
27.5.17	DR & ZE	C179	Forest red gum	542625	6798878	465	1.46	Phase 2
27.5.17	DR & ZE	C180	Cabbage palm	542622	6798880	315	0.99	Phase 2
27.5.17	DR & ZE	C217	Swamp oak	542682	6798954	299	0.95	Phase 2
27.5.17	DR & ZE	C218	Swamp oak	542675	6798953	344	1.09	Phase 2
27.5.17	DR & ZE	C219	Swamp oak	542673	6798958	274	0.86	Phase 2
27.5.17	DR & ZE	C220	Swamp oak	542673	6798958	375	1.18	Phase 2
27.5.17	DR & ZE	C225	Swamp oak	542715	6798984	350	1.1	Phase 2
27.5.17	DR & ZE	C226	Swamp oak	542721	6798982	300	0.95	Phase 2
27.5.17	DR & ZE	C235	Swamp oak	542700	6799008	290	0.91	Phase 2
27.5.17	DR & ZE	C239	Swamp oak	542740	6799082	355	1.11	Phase 2
27.5.17	DR & ZE	C240	Swamp oak	542740	6799084	345	1.09	Phase 2
27.5.17	DR & ZE	C241	Swamp oak	542739	6799086	284	0.89	Phase 2
27.5.17	DR & ZE	C242	Black wattle	542728	6799087	294	0.92	Phase 2

Date	Observer	Tree number	Species	Easting	Northing	DBH	Circumference	Collar Status
27.5.17	DR & ZE	C247	Broad-leaved paperbark	542748	6799250	295	0.92	Phase 2
27.5.17	DR & ZE	C247.1				200	0.63	Phase 2
27.5.17	DR & ZE	C249	Broad-leaved paperbark	542778	6799260	978	3.06	Phase 2
27.5.17	DR & ZE	C250	Broad-leaved paperbark	542775	6799256	770	2.42	Phase 2
27.5.17	DR & ZE	C251	Broad-leaved paperbark	542754	6799252	1097	3.45	Phase 2
27.5.17	DR & ZE	C253	Broad-leaved paperbark	542827	6799346	430	1.35	Phase 2
27.5.17	DR & ZE	C253.1				345	1.09	Phase 2
27.5.17	DR & ZE	C253.2				362	1.14	Phase 2
27.5.17	DR & ZE	C254	Broad-leaved paperbark	542826	6799348	400	1.25	Phase 2
27.5.17	DR & ZE	C254.1				300	0.93	Phase 2
27.5.17	DR & ZE	C255	Broad-leaved paperbark	542825	6799342	310	0.98	Phase 2
27.5.17	DR & ZE	C255.1				450	1.4	Phase 2
27.5.17	DR & ZE	C255.2				435	1.36	Phase 2
27.5.17	DR & ZE	C256	Broad-leaved paperbark	542827	6799348	302	0.95	Phase 2
27.5.17	DR & ZE	C257	Black wattle	542827	6799340	270	0.85	Phase 2
27.5.17	DR & ZE	C258	Broad-leaved paperbark	542826	6799353	680	2.14	Phase 2
27.5.17	DR & ZE	C259	Broad-leaved paperbark	542833	6799349	780	2.46	Phase 2
12.7.17	GM & SR	C284	Ficus sp.	542586	6798863	327	1.03	Phase 2
18.7.17	BT & ZE	Add	Stag	NR	NR	NR	NR	Phase 2
18.7.17	BT & ZE	Add	Stag	NR	NR	NR	NR	Phase 2
15.5.17	DR & SR	C5	Forest red gum	542667	6798544	795	2.49	Phase 3
15.5.17	DR & SR	C5.1				477	1.5	Phase 3
15.5.17	DR & SR	C5.2				448	1.4	Phase 3
15.5.17	DR & SR	C5.3				385	1.21	Phase 3
15.5.17	DR & SR	C7	Grey Ironbark	542560	6798376	1100	3.45	Phase 3
15.5.17	DR & SR	C14	Pink bloodwood	542500	6798263	428	1.35	Phase 3
15.5.17	DR & SR	C15	Broad-leaved paperbark & strangler fig	542501	6798252	495	1.55	Phase 3
15.5.17	DR & SR	C16	Broad-leaved paperbark	542484	6798262	300	0.94	Phase 3
15.5.17	DR & SR	C16.1				305	0.97	Phase 3
15.5.17	DR & SR	C16.2				398	1.25	Phase 3
15.5.17	DR & SR	C16.3				248	0.78	Phase 3
15.5.17	DR & SR	C16.4				219	0.69	Phase 3
15.5.17	DR & SR	C16.5				178	0.56	Phase 3
15.5.17	DR & SR	C18	Strangler fig	542485	6798258	290	0.9	Phase 3
15.5.17	DR & SR	C19	Strangler fig	542485	6798258	449	1.41	Phase 3
15.5.17	DR & SR	C20	Swamp box	542493	6798250	360	1.12	Phase 3
15.5.17	DR & SR	C21	Broad-leaved paperbark	542484	6798245	575	1.8	Phase 3
15.5.17	DR & SR	C23	Broad-leaved paperbark	542469	6798255	560	1.76	Phase 3
15.5.17	DR & SR	C31	Broad-leaved paperbark	542481	6798239	373	1.17	Phase 3
15.5.17	DR & SR	C32	Broad-leaved paperbark	542481	6798235	374	1.18	Phase 3
15.5.17	DR & SR	C33	Broad-leaved paperbark	542481	6798234	301	0.95	Phase 3
15.5.17	DR & SR	C42	Broad-leaved paperbark	542481	6798233	339	1.07	Phase 3
15.5.17	DR & SR	C48	Broad-leaved paperbark	542481	6798227	466	1.46	Phase 3
15.5.17	DR & SR	C50	Ficus spp	542477	6798223	575	1.8	Phase 3
15.5.17	DR & SR	C51	Swamp box	542473	6798214	385	1.21	Phase 3

Date	Observer	Tree number	Species	Easting	Northing	DBH	Circumference	Collar Status
15.5.17	DR & SR	C52	Swamp box	542474	6798217	322	1.01	Phase 3
15.5.17	DR & SR	C53	Swamp box	542468	6798210	427	1.35	Phase 3
15.5.17	DR & SR	C54	Broad-leaved paperbark	542433	6798187	797	2.5	Phase 3
15.5.17	DR & SR	C55	Broad-leaved paperbark	542434	6798185	627	1.97	Phase 3
15.5.17	DR & SR	C69	Camphor Laurel	542264	6798274	384	1.2	Phase 3
15.5.17	DR & SR	C70	Camphor Laurel	542272	6798279	1012	3.18	Phase 3
16.5.17	DR & SR	C73	Cypress pine	542335	6798310	550	1.73	Phase 3
16.5.17	DR & SR	C73.1				365	1.15	Phase 3
16.5.17	DR & SR	C74	Mango	542340	6798321	370	1.17	Phase 3
16.5.17	DR & SR	C75	Grey Ironbark	542330	6798404	714	2.24	Phase 3
16.5.17	DR & SR	C76	Camphor Laurel	542286	6798414	550	1.73	Phase 3
16.5.17	DR & SR	C77	Camphor Laurel	542275	6798417	389	1.22	Phase 3
16.5.17	DR & SR	C77.1				381	1.2	Phase 3
16.5.17	DR & SR	C78	Camphor Laurel	542277	6798417	500	1.57	Phase 3
16.5.17	DR & SR	C78.1				562	1.76	Phase 3
16.5.17	DR & SR	C79	Camphor Laurel	542274	6798417	499	1.57	Phase 3
16.5.17	DR & SR	C80	Camphor Laurel	542267	6798394	515	1.62	Phase 3
16.5.17	DR & SR	C80.1				460	1.44	Phase 3
16.5.17	DR & SR	C80.2				675	2.12	Phase 3
16.5.17	DR & SR	C80.3				673	2.11	Phase 3
16.5.17	DR & SR	C81	Tuckeroo	542239	6798379	418	1.31	Phase 3
25.5.17	DR & ZE	C89	Mango	542332	6798521	335	1.06	Phase 3
25.5.17	DR & ZE	C93	Eucalyptus spp	542362	6798517	355	1.12	Phase 3
25.5.17	DR & ZE	C94	White Mahogany	542374	6798511	945	2.97	Phase 3
25.5.17	DR & ZE	C95	White mahogany	542378	6798510	443	1.39	Phase 3
25.5.17	DR & ZE	C96	Broad-leaved paperbark	542376	6798558	320	1.02	Phase 3
25.5.17	DR & ZE	C97	Broad-leaved paperbark	542382	6798556	380	1.2	Phase 3
25.5.17	DR & ZE	C98	African tulip	542409	6798559	380	1.19	Phase 3
25.5.17	DR & ZE	C99	Blackbutt	542393	6798541	517	1.65	Phase 3
25.5.17	DR & ZE	C100	Mango	542401	6798514	728	2.29	Phase 3
25.5.17	DR & ZE	C101	Mango	542410	6798506	400	1.26	Phase 3
25.5.17	DR & ZE	C101.1				271	0.85	Phase 3
25.5.17	DR & ZE	C102	Mango	542416	6798508	516	1.62	Phase 3
25.5.17	DR & ZE	C103	Mango	542419	6798507	477	1.5	Phase 3
25.5.17	DR & ZE	C104	Mango	542419	6798503	510	1.6	Phase 3
25.5.17	DR & ZE	C114	Swamp mahogany	542461	6798563	525	1.64	Phase 3
25.5.17	DR & ZE	C116	Tallowwood	542494	6798602	550	1.73	Phase 3
25.5.17	DR & ZE	C117	Tallowwood	542505	6798654	560	1.76	Phase 3
25.5.17	DR & ZE	C121	Forest red gum	542490	6798567	754	2.36	Phase 3
27.5.17	DR & ZE	C156	Forest red gum 542756 6		6798494	285	0.9	Phase 3
27.5.17	DR & ZE	C156.1				280	0.87	Phase 3
27.5.17	DR & ZE	C156.2			Phase 3			
27.5.17	DR & ZE	C157			0.54	Phase 3		
27.5.17	DR & ZE	C157.1				185	0.59	Phase 3
27.5.17	DR & ZE	C159	Forest red gum	542738	6798521	242	0.76	Phase 3
27.5.17	DR & ZE	C159.1				180	0.57	Phase 3

Date	Observer	Tree number	Species	Easting	Northing	DBH	Circumference	Collar Status
27.5.17	DR & ZE	C161	Forest red gum	542731	6798533	245	0.76	Phase 3
27.5.17	DR & ZE	C162	Blueberry ash	542731	6798535	231	0.73	Phase 3
27.5.17	DR & ZE	C164	Forest red gum	542652	6798673	208	0.66	Phase 3
27.5.17	DR & ZE	C164.1				203	0.63	Phase 3
27.5.17	DR & ZE	C165	Forest red gum	542660	6798659	160	0.51	Phase 3
27.5.17	DR & ZE	C166	Forest red gum	542662	6798659	136	0.43	Phase 3
27.5.17	DR & ZE	C171	Forest red gum	542612	6798830	795	2.5	Phase 3
27.5.17	DR & ZE	C173	Forest red gum	542618	6798826	720	2.26	Phase 3
27.5.17	DR & ZE	C175	Forest red gum	542611	6798835	408	1.28	Phase 3
27.5.17	DR & ZE	C176	Forest red gum	542607	6798844	530	1.67	Phase 3
27.5.17	DR & ZE	C177	Hoop pine	542605	6798862	900	2.82	Phase 3
27.5.17	DR & ZE	C178	Forest red gum	542619	6798847	560	1.76	Phase 3
27.5.17	DR & ZE	C181	Broad-leaved paperbark	542692	6798832	290	0.91	Phase 3
27.5.17	DR & ZE	C181.1				345	1.09	Phase 3
27.5.17	DR & ZE	C182	Broad-leaved paperbark	542687	6798842	497	1.55	Phase 3
27.5.17	DR & ZE	C183	Broad-leaved paperbark	542688	6798842	185	0.59	Phase 3
27.5.17	DR & ZE	C183.1				220	0.7	Phase 3
27.5.17	DR & ZE	C183.2				204	0.64	Phase 3
27.5.17	DR & ZE	C184	Broad-leaved paperbark	542692	6798841	233	0.7	Phase 3
27.5.17	DR & ZE	C184.1				297	0.93	Phase 3
27.5.17	DR & ZE	C184.2				277	0.87	Phase 3
27.5.17	DR & ZE	C185	Swamp oak	542695	6798840	230	0.72	Phase 3
27.5.17	DR & ZE	C185.1				274	0.87	Phase 3
27.5.17	DR & ZE	C185.2				370	1.16	Phase 3
27.5.17	DR & ZE	C186	Swamp oak	542690	6798841	394	1.24	Phase 3
27.5.17	DR & ZE	C187	Swamp oak	542690	6798850	335	1.04	Phase 3
27.5.17	DR & ZE	C188	Swamp oak	542692	6798867	352	1.1	Phase 3
27.5.17	DR & ZE	C189	Swamp oak	542699	6798870	565	1.78	Phase 3
27.5.17	DR & ZE	C190	Swamp oak	542698	6798881	413	1.3	Phase 3
27.5.17	DR & ZE	C191	Swamp oak	542704	6798878	510	1.6	Phase 3
27.5.17	DR & ZE	C192	Broad-leaved paperbark	542698	6798884	390	1.23	Phase 3
27.5.17	DR & ZE	C193	Broad-leaved paperbark	542705	6798895	340	1.23	Phase 3
27.5.17	DR & ZE	C193.1				170	0.55	Phase 3
27.5.17	DR & ZE	C193.2				189	0.59	Phase 3
27.5.17	DR & ZE	C194	Broad-leaved paperbark	542706	6798891	330	1.04	Phase 3
27.5.17	DR & ZE	C195	Broad-leaved paperbark	542709	6798896	518	1.63	Phase 3
27.5.17	DR & ZE	C195.1				408	1.28	Phase 3
27.5.17	DR & ZE	C196	Broad-leaved paperbark	542706	6798901	510	1.6	Phase 3
27.5.17	DR & ZE	C203	Swamp oak	542715	6798923	397	1.25	Phase 3
27.5.17	DR & ZE	C213	Broad-leaved paperbark 542731 6798937 380 1.2		Phase 3			
27.5.17	DR & ZE	C213.1	330 1.04		Phase 3			
27.5.17	DR & ZE	C215	Swamp oak 542703 6798949 170 0.54		Phase 3			
27.5.17	DR & ZE	C215.1	340 1.06		Phase 3			
27.5.17	DR & ZE	C215.2	263 0.83		Phase 3			
27.5.17	DR & ZE	C215.3				210	0.67	Phase 3
27.5.17	DR & ZE	C216	Hoop pine	542703	6798952	320	1	Phase 3

Date	Observer	Tree number	Species	Easting	Northing	DBH	Circumference	Collar Status
27.5.17	DR & ZE	C221	Swamp oak	542670	6798957	338	1.07	Phase 3
27.5.17	DR & ZE	C222	Swamp oak	542666	6798958	334	1.05	Phase 3
27.5.17	DR & ZE	C223	Swamp oak	542666	6798960	300	0.94	Phase 3
27.5.17	DR & ZE	C227	Swamp oak	542721	6798979	350	1.1	Phase 3
27.5.17	DR & ZE	C227.1				228	0.72	Phase 3
27.5.17	DR & ZE	C227.2				250	0.79	Phase 3
27.5.17	DR & ZE	C228	Swamp oak	542726	6798977	350	1.09	Phase 3
27.5.17	DR & ZE	C231	Swamp oak	542741	6798979	414	1.3	Phase 3
27.5.17	DR & ZE	C232	Swamp oak	542737	6798984	317	1	Phase 3
27.5.17	DR & ZE	C233	Swamp oak	542720	6799003	297	0.93	Phase 3
27.5.17	DR & ZE	C233.1				260	0.81	Phase 3
27.5.17	DR & ZE	C234	Swamp oak	542717	6799001	307	0.96	Phase 3
27.5.17	DR & ZE	C234.1				224	0.7	Phase 3
27.5.17	DR & ZE	C237	Black wattle	542749	6799072	542	1.7	Phase 3
27.5.17	DR & ZE	C238	Swamp oak	542740	6799083	354	1.11	Phase 3
27.5.17	DR & ZE	C245	Camphor Laurel	542792	6799244	480	1.51	Phase 3
27.5.17	DR & ZE	C246	Broad-leaved paperbark	542790	6799248	312	0.98	Phase 3
27.5.17	DR & ZE	C248	Broad-leaved paperbark	542780	6799255	645	2.03	Phase 3
27.5.17	DR & ZE	C248.1				485	1.51	Phase 3
12.7.17	GM & SR	C272	Hoop pine	542578	6798959	922	2.9	Phase 3
12.7.17	GM & SR	C273	Hoop pine	542580	6798927	1045	3.28	Phase 3
12.7.17	GM & SR	C274	Hoop pine	542595	6798926	530	1.66	Phase 3
12.7.17	GM & SR	C274.1				295	0.94	Phase 3
12.7.17	GM & SR	C275	Hoop pine	542605	6798959	907	2.85	Phase 3
12.7.17	GM & SR	C276	Blackbutt	542564	6798890	694	2.18	Phase 3
12.7.17	GM & SR	C278	Tallowwood	542555	6798882	595	1.87	Phase 3
12.7.17	GM & SR	C279	Hoop pine	542559	6798873	703	2.21	Phase 3
12.7.17	GM & SR	C280	Hoop pine	542568	6798868	490	1.94	Phase 3
12.7.17	GM & SR	C280.1				410	1.28	Phase 3
12.7.17	GM & SR	C280.2				552	1.74	Phase 3
12.7.17	GM & SR	C281	Lemon-scented gum	542573	6798859	630	1.98	Phase 3
12.7.17	GM & SR	C282	Broad-leaved paperbark	542571	6798841	485	1.52	Phase 3
12.7.17	GM & SR	C282.1				188	0.6	Phase 3
19.7.17	BT & ZE	C285	Hoop pine	542588	6798775	530.00	1.65	Phase 3
19.7.17	BT & ZE	C285.1	Hoop pine			615.00	1.94	Phase 3
19.7.17	BT & ZE	C286	Hoop pine	542584	6798787	700.00	2.20	Phase 3
19.7.17	BT & ZE	C287	Hoop Pine	542584	6798787	465.00	1.46	Phase 3
2.8.17	DR & ZE	C288	Forest red gum	542588	6798836	260	NR	Phase 3
2.8.17	DR & ZE	C288.1				315	NR	Phase 3
1.8.17	DR & ZE	Add	Palm			80	NR	Phase 3
1.8.17	DR & ZE	Add	Palm			100	NR	Phase 3
1.8.17	DR & ZE	Add	Palm			85	NR	Phase 3
2.8.17	DR & ZE	Add				100	NR	Phase 3

Table A4: Habitat trees identified in the Wardell Road study area. s = small (10-50mm); m = medium (51-150mm); l = large (151-300mm); vl = very large (>300mm).

Tree no.	Tree Species	Easting	Northing	DBH (m)	Circumf (m)	Branch	Trunk	Spout	Collar status
H1	Cypress pine	542342	6798306	0.66	2.09		1m		Phase 3
H2	White mahogany	542306	6798537	1.26	3.95	1m, 1s	11		Phase 4
Н3	White mahogany	542337	6798519	0.79	2.48		1m		Phase 3
H4	White mahogany	542495	6798537	1.07	3.37	1s, 4m	2s, 2m		Phase 2
H5	White mahogany	542509	6798546	0.42	1.31	1s	2s		Phase 4
H6	Forest red gum	542677	6798675	1.00	3.14	1s	1term		Phase 4
H7	Forest Red Gum	542714	6798662	1.30	4.08	2s, 2m			Phase 4

Table A5: Video footage recorded from cameras installed at six collared feed trees at the Wardell Road hotspot.

Download date	Tree no	Date	Time	Species	Confidence	Movement description	Record No.
25/08/17	C173	10/08/17	1838	Cat	D	PB	31
25/08/17	C173	10/08/17	2225	Dog	D	PB	34
25/08/17	C173	12/08/17	0422	Cat	D	PB	47
25/08/17	C173	16/08/17	0424	Cat	D	PB	52
25/08/17	C173	19/08/17	0437	Cat	D	PB	253
25/08/17	C173	20/08/17	0001	Cat	D	РВ	293
25/08/17	C169	10/08/17	2216	Dog	D	РВ	9
25/08/17	C169	10/08/17	2222	Dog	D	PF	10
25/08/17	C174	16/08/17	0423	Cat	D	РВ	75
6/09/17	C168	29/08/17	0436	Cat	D	РВ	45
6/09/17	C168	29/08/17	2052	Dog x 2	D	РВ	47
6/09/17	C174	29/08/17	0434	Cat	D	РВ	61
6/09/17	C174	29/08/17	2050	Dog	D	РВ	71

Table 5 Key								
TCR	Touches Collar Retreats							
AT	Approaches Tree							
РВ	Pass in Background							
PF	Pass in Foreground							
Ро	Possible (50-75% certainty)							
Pr	Probable (75-90% certainty)							
D	Definite (90%+ certainty)							

Date	Survey No.	Observers	Start	End	Temp Range	Cloud %	Wind	Rain	Moon	Comments
30/5/2017	1N	BT,NP, SR	1730	2056	14-17	10	Nil	Fine	1/4	
31/5/2017	1D	NP, SR, MJ	1202	1530	16-19	nil	Mlb	Fine	1/4	
5/6/2017	2N	BT, GM, SR	1722	2059	12-16	15	Msb	Fine	2/4	
6/6/2017	2D	BT, GM, DR	0927	1308	17-20	10	Msb	Fine	2/4	
3/07/2017	3N	NP, GM, SR	1725	2115	17-19	10-80	MLB	Fine	2/4	Fine, then light shower.
4/07/2017	3D	GM, SR, ZE	945	1330	21-22	0	Nil	Fine	N/A	
26/7/17	4N	BT MJ SJ	1730	2055	14-17	0	Msb	Fine	2/4	
27/7/17	4D	BT MJ SJ	941	1248	28-20	0	Msb	Fine	2/4	
9/8/17	5N	NP, GM, ZE	1800	2139	7-14	0	Msb	Fine	4/4	
10/8/17	5D	NP, GM, ZE	900	1245	1-12	0	Nil	Fine	0	
23/8/17	6N	DR, MJ, SR	1800	2200	21-19	0	MSB	Fine	0/4	Fine, smoky
24/8/17	6D	DR, MJ, ZE	845	1230	18-25	60	MSB	Fine	0/4	Rain forecast

Table A6: Weather conditions during Phase 2 koala population surveys at the Wardell Road hotspot. N = night; D= day; Mlb = moves large branch; Msb = moves small branch.

 Table A7: Koala scat collection location data. HZMT = Hazlemount Lane.

Collection Date	Record No.	Impact/ Control	Time	T'sect/ Location	Easting	Northing	Tree sp.	
31/5/2017	WK1	1		1	542533	6798776	Forest red gum	
2/6/2017	WC1	С	915	HZMT	531901	6798489	Tallowwood	
6/6/2017	WK2	1	1325	1	542533	6798776	Forest red gum	
6/6/2017	WK3	I	1325	1	542569	6798777	Forest red gum	
6/6/2017	WC2	С	830	HZMT	532008	6799069	Flooded gum	
6/6/2017	WC3	С	900	HZMT	531891	6798479	Flooded gum	
4/07/2017	WK4	I	1345	1	542549	6798784	Narrow-leaved red gum	
5/07/2017	WC4	С	735	HZMT	531904	6798512	Forest red gum	
27/07/17	WK5	I	1320	7	542763	6798531	Forest red gum	
28/07/17	WC5	С	900	HZMT	531915	6798549	Swamp mahogany	
27/07/17	WK5	1	1320	7	542763	6798531	Forest red gum	
28/07/17	WC5	С	900	HZMT	531915	6798549	Swamp mahogany	
10/8/17	WK6	I	1340	8	542803	6798541	Forest Red Gum	
11/8/17	WC6	С	815	HZMT	531916	6798500	Forest Red Gum	

T'sect/ Location	DBH	Temp at collection	Weather at collection	Rainfall (collection period)	Sex	Breeding	Health	Comments (activity; ear tag?)
1	600		Fine	Nil	Мро	No	Healthy	
HZMT	450	12	Fine	Nil	м	No	Healthy	Large male, healthy
1	600	20.5	Fine	Nil	Fpo	No	Wet, stained	
1	300	20.5	Fine	Nil	Мро	No	Wet, stained	
HZMT	300	12	Fine	Nil	Мро	?	Dry	
HZMT	380	14	Fine	Nil	Мро	?	Dry	
1	600	24	Fine	Nil	Мро	?	Stained	
HZMT	650	9	Fine	Nil	Fpo	?	Healthy	
7	1400	19	fine	nil	Fpo	?	Dirty bum	
HZMT	500	9	fine	nil	Fpo	?	Dirty bum	
7	1400	19	fine	nil	Fpo	?	Dirty bum	
HZMT	500	9	fine	nil	Fpo	?	Dirty bum	
8	600	23	Fine	Nil	Fpo	?		Scats older than 24hrs.
HZMT	1000	10	Fine	Nil	м	?	Healthy	Scats older than 24hrs

Table A8: Koala scat collection weather and health data. HZMT = Hazlemount Lane; M = male; F = female; po = possible; ? = unsure.